File size: 5,180 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 10e9b7d 2e52478 e80aab9 3db6293 e80aab9 2e52478 31243f4 2e52478 31243f4 2e52478 4021bf3 2e52478 31243f4 2e52478 3c4371f 7e4a06b 2e52478 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 2e52478 31243f4 3c4371f 31243f4 2e52478 36ed51a 2e52478 3c4371f 7d65c66 eccf8e4 31243f4 7d65c66 31243f4 2e52478 31243f4 e80aab9 2e52478 7d65c66 31243f4 2e52478 31243f4 2e52478 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 2e52478 31243f4 2e52478 e80aab9 2e52478 e80aab9 31243f4 0ee0419 e514fd7 2e52478 e514fd7 e80aab9 7e4a06b 31243f4 9088b99 7d65c66 e80aab9 31243f4 e80aab9 2e52478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
# --- Hugging Face Agents & Tools imports ---
from transformers import load_tool, ReactAgent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Load Tools ---
# Document QA tool
qa_tool = load_tool(
task_or_repo_id="document_question_answering",
model_repo_id="deepset/roberta-base-squad2"
)
# Web search tool
web_tool = load_tool(
task_or_repo_id="search"
)
# Python REPL tool
python_tool = load_tool(
task_or_repo_id="python_repl"
)
# --- Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized with real tools.")
# Initialize a ReAct agent with the loaded tools
self.agent = ReactAgent(
tools=[qa_tool, web_tool, python_tool],
llm_engine="openai/chat:gpt-3.5-turbo",
verbose=True
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
answer = self.agent.run(question)
print(f"Agent returning answer: {answer}")
return answer
except Exception as e:
print(f"Error in agent execution: {e}")
return f"AGENT ERROR: {e}"
# --- Evaluation & Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code at: {agent_code}")
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Agent on each question
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Submit Answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
print(f"Submission error: {e}")
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and modify the code to define your agent's logic and tools.
2. Log in with Hugging Face to submit under your username.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("Launching Gradio App...")
demo.launch(debug=True, share=False)
|