File size: 12,820 Bytes
e05a1d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
Donut
Copyright (c) 2022-present NAVER Corp.
MIT License
"""
import json
import os
import random
from collections import defaultdict
from typing import Any, Dict, List, Tuple, Union

import torch
import zss
from datasets import load_dataset
from nltk import edit_distance
from torch.utils.data import Dataset
from transformers.modeling_utils import PreTrainedModel
from zss import Node


def save_json(write_path: Union[str, bytes, os.PathLike], save_obj: Any):
    with open(write_path, "w") as f:
        json.dump(save_obj, f)


def load_json(json_path: Union[str, bytes, os.PathLike]):
    with open(json_path, "r") as f:
        return json.load(f)


class DonutDataset(Dataset):
    """
    DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
    Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
    and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string)

    Args:
        dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
        ignore_id: ignore_index for torch.nn.CrossEntropyLoss
        task_start_token: the special token to be fed to the decoder to conduct the target task
    """

    def __init__(
        self,
        dataset_name_or_path: str,
        donut_model: PreTrainedModel,
        max_length: int,
        split: str = "train",
        ignore_id: int = -100,
        task_start_token: str = "<s>",
        prompt_end_token: str = None,
        sort_json_key: bool = True,
    ):
        super().__init__()

        self.donut_model = donut_model
        self.max_length = max_length
        self.split = split
        self.ignore_id = ignore_id
        self.task_start_token = task_start_token
        self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token
        self.sort_json_key = sort_json_key

        self.dataset = load_dataset(dataset_name_or_path, split=self.split)
        self.dataset_length = len(self.dataset)

        self.gt_token_sequences = []
        #print(self.dataset)
        for sample in self.dataset:
           # print(sample)
           # print(sample['ground_truth'])
            ground_truth = json.loads(sample["ground_truth"])
           # print(ground_truth)
            if "gt_parses" in ground_truth:  # when multiple ground truths are available, e.g., docvqa
                assert isinstance(ground_truth["gt_parses"], list)
                gt_jsons = ground_truth["gt_parses"]
            else:
                assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
                gt_jsons = [ground_truth["gt_parse"]]

            self.gt_token_sequences.append(
                [
                    task_start_token
                    + self.donut_model.json2token(
                        gt_json,
                        update_special_tokens_for_json_key=self.split == "train",
                        sort_json_key=self.sort_json_key,
                    )
                    + self.donut_model.decoder.tokenizer.eos_token
                    for gt_json in gt_jsons  # load json from list of json
                ]
            )

        self.donut_model.decoder.add_special_tokens([self.task_start_token, self.prompt_end_token])
        self.prompt_end_token_id = self.donut_model.decoder.tokenizer.convert_tokens_to_ids(self.prompt_end_token)

    def __len__(self) -> int:
        return self.dataset_length

    def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Load image from image_path of given dataset_path and convert into input_tensor and labels.
        Convert gt data into input_ids (tokenized string)

        Returns:
            input_tensor : preprocessed image
            input_ids : tokenized gt_data
            labels : masked labels (model doesn't need to predict prompt and pad token)
        """
        sample = self.dataset[idx]

        # input_tensor
        input_tensor = self.donut_model.encoder.prepare_input(sample["image"], random_padding=self.split == "train")

        # input_ids
        processed_parse = random.choice(self.gt_token_sequences[idx])  # can be more than one, e.g., DocVQA Task 1
        input_ids = self.donut_model.decoder.tokenizer(
            processed_parse,
            add_special_tokens=False,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
        )["input_ids"].squeeze(0)

        if self.split == "train":
            labels = input_ids.clone()
            labels[
                labels == self.donut_model.decoder.tokenizer.pad_token_id
            ] = self.ignore_id  # model doesn't need to predict pad token
            labels[
                : torch.nonzero(labels == self.prompt_end_token_id).sum() + 1
            ] = self.ignore_id  # model doesn't need to predict prompt (for VQA)
            return input_tensor, input_ids, labels
        else:
            prompt_end_index = torch.nonzero(
                input_ids == self.prompt_end_token_id
            ).sum()  # return prompt end index instead of target output labels
            return input_tensor, input_ids, prompt_end_index, processed_parse


class JSONParseEvaluator:
    """
    Calculate n-TED(Normalized Tree Edit Distance) based accuracy and F1 accuracy score
    """

    @staticmethod
    def flatten(data: dict):
        """
        Convert Dictionary into Non-nested Dictionary
        Example:
            input(dict)
                {
                    "menu": [
                        {"name" : ["cake"], "count" : ["2"]},
                        {"name" : ["juice"], "count" : ["1"]},
                    ]
                }
            output(list)
                [
                    ("menu.name", "cake"),
                    ("menu.count", "2"),
                    ("menu.name", "juice"),
                    ("menu.count", "1"),
                ]
        """
        flatten_data = list()

        def _flatten(value, key=""):
            if type(value) is dict:
                for child_key, child_value in value.items():
                    _flatten(child_value, f"{key}.{child_key}" if key else child_key)
            elif type(value) is list:
                for value_item in value:
                    _flatten(value_item, key)
            else:
                flatten_data.append((key, value))

        _flatten(data)
        return flatten_data

    @staticmethod
    def update_cost(node1: Node, node2: Node):
        """
        Update cost for tree edit distance.
        If both are leaf node, calculate string edit distance between two labels (special token '<leaf>' will be ignored).
        If one of them is leaf node, cost is length of string in leaf node + 1.
        If neither are leaf node, cost is 0 if label1 is same with label2 othewise 1
        """
        label1 = node1.label
        label2 = node2.label
        label1_leaf = "<leaf>" in label1
        label2_leaf = "<leaf>" in label2
        if label1_leaf == True and label2_leaf == True:
            return edit_distance(label1.replace("<leaf>", ""), label2.replace("<leaf>", ""))
        elif label1_leaf == False and label2_leaf == True:
            return 1 + len(label2.replace("<leaf>", ""))
        elif label1_leaf == True and label2_leaf == False:
            return 1 + len(label1.replace("<leaf>", ""))
        else:
            return int(label1 != label2)

    @staticmethod
    def insert_and_remove_cost(node: Node):
        """
        Insert and remove cost for tree edit distance.
        If leaf node, cost is length of label name.
        Otherwise, 1
        """
        label = node.label
        if "<leaf>" in label:
            return len(label.replace("<leaf>", ""))
        else:
            return 1

    def normalize_dict(self, data: Union[Dict, List, Any]):
        """
        Sort by value, while iterate over element if data is list
        """
        if not data:
            return {}

        if isinstance(data, dict):
            new_data = dict()
            for key in sorted(data.keys(), key=lambda k: (len(k), k)):
                value = self.normalize_dict(data[key])
                if value:
                    if not isinstance(value, list):
                        value = [value]
                    new_data[key] = value

        elif isinstance(data, list):
            if all(isinstance(item, dict) for item in data):
                new_data = []
                for item in data:
                    item = self.normalize_dict(item)
                    if item:
                        new_data.append(item)
            else:
                new_data = [str(item).strip() for item in data if type(item) in {str, int, float} and str(item).strip()]
        else:
            new_data = [str(data).strip()]

        return new_data

    def cal_f1(self, preds: List[dict], answers: List[dict]):
        """
        Calculate global F1 accuracy score (field-level, micro-averaged) by counting all true positives, false negatives and false positives
        """
        total_tp, total_fn_or_fp = 0, 0
        for pred, answer in zip(preds, answers):
            pred, answer = self.flatten(self.normalize_dict(pred)), self.flatten(self.normalize_dict(answer))
            for field in pred:
                if field in answer:
                    total_tp += 1
                    answer.remove(field)
                else:
                    total_fn_or_fp += 1
            total_fn_or_fp += len(answer)
        return total_tp / (total_tp + total_fn_or_fp / 2)

    def construct_tree_from_dict(self, data: Union[Dict, List], node_name: str = None):
        """
        Convert Dictionary into Tree

        Example:
            input(dict)

                {
                    "menu": [
                        {"name" : ["cake"], "count" : ["2"]},
                        {"name" : ["juice"], "count" : ["1"]},
                    ]
                }

            output(tree)
                                     <root>
                                       |
                                     menu
                                    /    \
                             <subtree>  <subtree>
                            /      |     |      \
                         name    count  name    count
                        /         |     |         \
                  <leaf>cake  <leaf>2  <leaf>juice  <leaf>1
         """
        if node_name is None:
            node_name = "<root>"

        node = Node(node_name)

        if isinstance(data, dict):
            for key, value in data.items():
                kid_node = self.construct_tree_from_dict(value, key)
                node.addkid(kid_node)
        elif isinstance(data, list):
            if all(isinstance(item, dict) for item in data):
                for item in data:
                    kid_node = self.construct_tree_from_dict(
                        item,
                        "<subtree>",
                    )
                    node.addkid(kid_node)
            else:
                for item in data:
                    node.addkid(Node(f"<leaf>{item}"))
        else:
            raise Exception(data, node_name)
        return node

    def cal_acc(self, pred: dict, answer: dict):
        """
        Calculate normalized tree edit distance(nTED) based accuracy.
        1) Construct tree from dict,
        2) Get tree distance with insert/remove/update cost,
        3) Divide distance with GT tree size (i.e., nTED),
        4) Calculate nTED based accuracy. (= max(1 - nTED, 0 ).
        """
        pred = self.construct_tree_from_dict(self.normalize_dict(pred))
        answer = self.construct_tree_from_dict(self.normalize_dict(answer))
        return max(
            0,
            1
            - (
                zss.distance(
                    pred,
                    answer,
                    get_children=zss.Node.get_children,
                    insert_cost=self.insert_and_remove_cost,
                    remove_cost=self.insert_and_remove_cost,
                    update_cost=self.update_cost,
                    return_operations=False,
                )
                / zss.distance(
                    self.construct_tree_from_dict(self.normalize_dict({})),
                    answer,
                    get_children=zss.Node.get_children,
                    insert_cost=self.insert_and_remove_cost,
                    remove_cost=self.insert_and_remove_cost,
                    update_cost=self.update_cost,
                    return_operations=False,
                )
            ),
        )