Spaces:
Sleeping
Sleeping
File size: 30,358 Bytes
99a05f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import os
os.environ["CDF_LIB"] = "/is/cluster/scratch/stripathi/data/cdf37_1-dist/src/lib"
import cv2
import pandas as pd
# import json
# import glob
# import h5py
import torch
# import trimesh
import numpy as np
import pickle as pkl
# from xml.dom import minidom
# import xml.etree.ElementTree as ET
from tqdm import tqdm
from spacepy import pycdf
# from .read_openpose import read_openpose
import sys
sys.path.append('../../')
# from models import hmr, SMPL
# import config
# import constants
import argparse
# import shutil
import smplx
import pytorch3d.transforms as p3dt
from utils.geometry import batch_rodrigues, batch_rot2aa, ea2rm
# from vis_utils.world_vis import overlay_mesh, vis_smpl_with_ground
model_type = 'smplx'
model_folder = '/ps/project/common/smplifyx/models/'
body_model_params = dict(model_path=model_folder,
model_type=model_type,
create_global_orient=True,
create_body_pose=True,
create_betas=True,
num_betas=10,
create_left_hand_pose=True,
create_right_hand_pose=True,
create_expression=True,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=True,
use_pca=False)
body_model = smplx.create(gender='neutral', **body_model_params).to('cuda')
def rich_extract(img_dataset_path, out_path, scene_indx, split=None, vis_path=None, visualize=False, downsample_factor=1):
# structs we use
imgnames_ = []
# scales_, centers_, parts_, Ss_, Ss_world_, openposes_ = [], [], [], [], [], []
poses_, shapes_, transls_ = [], [], []
# poses_world_, transls_world_, cams_r_, cams_t_ = [], [], [], []
cams_k_ = []
# ground_offset_ = []
# in_bos_label_ = []
contact_label_ = []
scene_seg_, part_seg_ = [], []
# # seqs in validation set
# if split == 'val':
# seq_list = ['2021-06-15_Multi_IOI_ID_00176_Yoga2',
# '2021-06-15_Multi_IOI_ID_00228_Yoga1',
# '2021-06-15_Multi_IOI_ID_03588_Yoga1',
# '2021-06-15_Multi_IOI_ID_00176_Yoga1']
# # seqs in testing set
# if split == 'test':
# seq_list = ['2021-06-15_Multi_IOI_ID_00186_Yoga1',
# '2021-06-15_Multi_IOI_ID_03588_Yoga2',
# 'MultiIOI_201019_ID03581_parkingLot_Calibration06_Settings06_PushUp__2',
# 'Multi-IOI_ID00227_Scene_ParkingLot_Calibration_03_CameraSettings_4_pushup_1']
scenes = sorted(os.listdir('/ps/project/datasets/RICH/rich_toolkit/data/images/test'))
# scene = scenes[scene_indx]
scene = 'ParkingLot2_009_impro5'
for scene_name in [scene]:
# for scene_name in ['LectureHall_003_wipingchairs1']:
out_file = os.path.join(out_path, f'rich_{scene_name}_smplx.npz')
if os.path.exists(out_file): return
print(scene_name)
for i, fl in tqdm(enumerate(sorted(os.listdir(os.path.join(img_dataset_path, 'images', split)))), dynamic_ncols=True):
if not scene_name in fl: continue
ind = fl.index('cam')
location = fl[:ind-1]
cam_num = fl[ind:ind+6]
img = fl[ind+7:-3] + 'jpeg'
imgname = os.path.join(location, cam_num, img)
mask_name = fl
sp = mask_name.split('_')
indx = mask_name.index('cam')
st = mask_name[indx-1:indx+7]
mask_name = mask_name.replace(st, '/')
mask_name = mask_name[:-7]
new_p = mask_name.split('/')
mask_name = new_p[0] + '/' + new_p[1] + '/' + sp[1] + '.pkl'
mask_path = os.path.join(img_dataset_path, 'labels', split, mask_name)
df = pd.read_pickle(mask_path)
mask = df['contact']
scene_path = os.path.join('/ps/scratch/ps_shared/stripathi/deco/4agniv/rich/seg_masks_new', split, fl[:-3] + 'png')
part_path = os.path.join('/ps/scratch/ps_shared/stripathi/deco/4agniv/rich/part_masks_new', split, fl[:-3] + 'png')
dataset_path = '/ps/project/datasets/RICH'
ind = fl.index('cam')
frame_id = fl[:ind-1]
location = frame_id.split('_')[0]
if location == 'LectureHall':
if 'chair' in frame_id:
cam2world_location = location + '_' + 'chair'
else:
cam2world_location = location + '_' + 'yoga'
else:
cam2world_location = location
img_num = fl.split('_')[-2]
cam_num = int(fl.split('_')[-1][:2])
# get ioi2scan transformation per sequence
ioi2scan_fn = os.path.join(dataset_path, 'website_release/multicam2world', cam2world_location + '_multicam2world.json')
try:
camera_fn = os.path.join(dataset_path, 'rich_toolkit/data/scan_calibration', location, f'calibration/{cam_num:03d}.xml')
focal_length_x, focal_length_y, camC, camR, camT, _, _, _ = extract_cam_param_xml(camera_fn)
except:
print(f'camera calibration file not found: {camera_fn}')
continue
# print('X: ', focal_length_x)
# print('Y: ', focal_length_y)
# path to smpl params
smplx_param = os.path.join(dataset_path, 'rich_toolkit/data/bodies', split, frame_id, str(img_num), frame_id.split('_')[1] + '.pkl')
# # path to GT bounding boxes
# bbox_path = os.path.join(dataset_path, 'preprocessed', split, frame_id, img_num, frame_id.split('_')[1], 'bbox_refine', f'{img_num}_{cam_num:02d}.json')
# # path with 2D openpose keypoints
# openpose_path = os.path.join(dataset_path, 'preprocessed', split, frame_id, img_num, frame_id.split('_')[1], 'keypoints_refine', f'{img_num}_{str(cam_num).zfill(2)}_keypoints.json')
# # path to image crops
# img_path = os.path.join(dataset_path, 'preprocessed', split, frame_id, img_num, frame_id.split('_')[1], 'images_refine', f'{img_num}_{cam_num:02d}.png')
# # bbox file
# try:
# with open(bbox_path, 'r') as f:
# bbox_dict = json.load(f)
# except:
# print(f'bbox file not found: {bbox_path}')
# continue
# # read GT bounding box
# x1_ul = bbox_dict['x1'] // downsample_factor
# y1_ul = bbox_dict['y1'] // downsample_factor
# x2_br = bbox_dict['x2'] // downsample_factor
# y2_br = bbox_dict['y2'] // downsample_factor
# bbox = np.array([x1_ul, y1_ul, x2_br, y2_br])
# center = [(bbox[2]+bbox[0])/2, (bbox[3]+bbox[1])/2]
# scale = 0.9 * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 200.
# get smpl parameters
## body resides in multi-ioi coordidate, where camera 0 is world zero.
with open(smplx_param, 'rb') as f:
body_params = pkl.load(f)
# in ioi coordinates: cam 0
beta = body_params['betas']
pose_aa = body_params['body_pose']
pose_rotmat = p3dt.axis_angle_to_matrix(torch.FloatTensor(pose_aa.reshape(-1,3))).numpy()
transl = body_params['transl']
global_orient = body_params['global_orient']
global_orient = p3dt.axis_angle_to_matrix(torch.FloatTensor(global_orient.reshape(-1,3))).numpy()
smpl_body_cam0 = body_model(betas=torch.FloatTensor(beta).to('cuda')) # canonical body with shape
vertices_cam0 = smpl_body_cam0.vertices.detach().cpu().numpy().squeeze()
joints_cam0 = smpl_body_cam0.joints.detach().cpu().numpy()
pelvis_cam0 = joints_cam0[:, 0, :]
# ## rigid transformation between multi-ioi and Leica scan (world)
# with open(ioi2scan_fn, 'r') as f:
# ioi2scan_dict = json.load(f)
# R_ioi2world = np.array(ioi2scan_dict['R']) # Note: R is transposed
# t_ioi2world= np.array(ioi2scan_dict['t']).reshape(1, 3)
# # # get SMPL params in world coordinates
# # # import ipdb; ipdb.set_trace()
# global_orient_world = np.matmul(R_ioi2world.T, global_orient)
# transl_world = np.matmul((pelvis_cam0+transl), R_ioi2world) + t_ioi2world - pelvis_cam0 # right multiplication to avoid transpose
# full_pose_rotmat_world = np.concatenate((global_orient_world, pose_rotmat), axis=0).squeeze()
# theta_world = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_world)).reshape(-1, 66).cpu().numpy()
# smpl_body_world = body_model(betas=torch.FloatTensor(beta).to('cuda'),
# body_pose=torch.FloatTensor(theta_world[:, 3:]).to('cuda'),
# transl=torch.FloatTensor(transl_world).to('cuda'),
# global_orient=torch.FloatTensor(theta_world[:, :3]).to('cuda'))
# vertices_world = smpl_body_world.vertices.detach().cpu().numpy().squeeze()
# joints3d_world = smpl_body_world.joints[:, 25:, :].detach().cpu().numpy().squeeze()
# # get SMPL params in camera coordinates
global_orient_cam = np.matmul(np.array(camR), global_orient)
transl_cam = np.matmul(camR, (pelvis_cam0 + transl).T).T + camT - pelvis_cam0
full_pose_rotmat_cam = np.concatenate((global_orient_cam, pose_rotmat), axis=0).squeeze()
theta_cam = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_cam)).reshape(-1, 66).cpu().numpy()
# read GT 2D keypoints
K = np.eye(3, dtype=np.float64)
K[0, 0] = focal_length_x / downsample_factor
K[1, 1] = focal_length_y / downsample_factor
K[:2, 2:] = camC.T / downsample_factor
# # get openpose 2D keypoints
# try:
# with open(openpose_path, 'r') as f:
# openpose = json.load(f)
# openpose = np.array(openpose['people'][0]['pose_keypoints_2d']).reshape([-1, 3])
# except:
# print(f'No openpose !! Missing {openpose_path}')
# continue
# get camera parameters wrt to scan
# R_worldtocam = np.matmul(camR, R_ioi2world) # Note: R_ioi2world is transposed
# T_worldtocam = -t_ioi2world + camT
# ground offset
# ground_offset = ground_eq[2]
# store data
jpg_img_path = os.path.join('/ps/project/datasets/RICH_JPG', split, imgname)
bmp_img_path = jpg_img_path.replace('/ps/project/datasets/RICH_JPG', '/ps/project/datasets/RICH/rich_toolkit/data/images')
bmp_img_path = bmp_img_path.replace('.jpeg', '.bmp')
if not os.path.exists(bmp_img_path):
bmp_img_path = bmp_img_path.replace('.bmp', '.png')
imgnames_.append(bmp_img_path)
contact_label_.append(mask)
scene_seg_.append(scene_path)
part_seg_.append(part_path)
# centers_.append(center)
# scales_.append(scale)
# openposes_.append(openpose)
poses_.append(theta_cam.squeeze())
transls_.append(transl_cam.squeeze())
# poses_world_.append(theta_world.squeeze())
# transls_world_.append(transl_world.squeeze())
shapes_.append(beta.squeeze())
# cams_r_.append(R_worldtocam.tolist())
# # Todo: note that T_worldtocam here is (1,3) whereas in h36m T_worldtocam is (1,3)
# cams_t_.append(T_worldtocam.tolist())
cams_k_.append(K.tolist())
# ground_offset_.append(ground_offset)
# for seq_i in tqdm(seq_list):
# print(f'Processing sequence: {seq_i}')
# # path with GT bounding boxes
# params_path = os.path.join(dataset_path, seq_i, 'params')
# # path to metadata for files
# md_path = os.path.join(dataset_path, seq_i, 'data')
# # glob all folders in params path
# frame_param_paths = sorted(glob.glob(os.path.join(params_path, '*')))
# frame_param_paths = [p for p in frame_param_paths if '.yaml' not in p]
# # get ioi2scan transformation per sequence
# ioi2scan_fn = os.path.join(dataset_path, seq_i, 'cam2scan.json')
# ## ground resides in Leica scan coordinate, which is (roughly) axis aligned.
# # ground_mesh = trimesh.load(os.path.join(dataset_path, seq_i, 'ground_mesh.ply'), process=False)
# # ground_eq = np.mean(ground_mesh.vertices, axis=0)
# # list all files in the folder
# cam_files = os.listdir(os.path.join(dataset_path, seq_i, f'calibration'))
# cam_list = sorted([int(os.path.splitext(f)[0]) for f in cam_files if '.xml' in f])
# # if split == 'val':
# # cam_list = cam_list[1:] # remove first camera in val
# for cam_num in cam_list[:1]:
# camera_fn = os.path.join(dataset_path, seq_i, f'calibration/{cam_num:03d}.xml')
# focal_length_x, focal_length_y, camC, camR, camT, _, _, _ = extract_cam_param_xml(camera_fn)
# for frame_param_path in tqdm(frame_param_paths):
# frame_id = os.path.basename(frame_param_path)
# frame_num = int(frame_id)
# # path to smpl params
# try:
# smplx_param = os.path.join(frame_param_path, '00', 'results/000.pkl')
# except:
# import ipdb; ipdb.set_trace()
# # path to GT bounding boxes
# bbox_path = os.path.join(md_path, frame_id, '00', 'bbox_refine', f'{frame_id}_{cam_num:02d}.json')
# # path with 2D openpose keypoints
# openpose_path = os.path.join(md_path, frame_id, '00', 'keypoints_refine', f'{frame_id}_{str(cam_num).zfill(2)}_keypoints.json')
# # path to image crops
# if downsample_factor == 1:
# img_path = os.path.join(md_path, frame_id, '00', 'images_orig', f'{frame_id}_{cam_num:02d}.png')
# else:
# img_path = os.path.join(md_path, frame_id, '00', 'images_orig_720p', f'{frame_id}_{cam_num:02d}.png')
# if not os.path.isfile(img_path):
# print(f'image not found: {img_path}')
# continue
# # raise FileNotFoundError
# # bbox file
# try:
# with open(bbox_path, 'r') as f:
# bbox_dict = json.load(f)
# except:
# print(f'bbox file not found: {bbox_path}')
# continue
# # read GT bounding box
# x1_ul = bbox_dict['x1'] // downsample_factor
# y1_ul = bbox_dict['y1'] // downsample_factor
# x2_br = bbox_dict['x2'] // downsample_factor
# y2_br = bbox_dict['y2'] // downsample_factor
# bbox = np.array([x1_ul, y1_ul, x2_br, y2_br])
# center = [(bbox[2]+bbox[0])/2, (bbox[3]+bbox[1])/2]
# scale = 0.9 * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 200.
# # get smpl parameters
# ## body resides in multi-ioi coordidate, where camera 0 is world zero.
# with open(smplx_param, 'rb') as f:
# body_params = pkl.load(f)
# # in ioi coordinates: cam 0
# beta = body_params['betas']
# pose_aa = body_params['body_pose']
# pose_rotmat = p3dt.axis_angle_to_matrix(torch.FloatTensor(pose_aa.reshape(-1,3))).numpy()
# transl = body_params['transl']
# global_orient = body_params['global_orient']
# global_orient = p3dt.axis_angle_to_matrix(torch.FloatTensor(global_orient.reshape(-1,3))).numpy()
# smpl_body_cam0 = body_model(betas=torch.FloatTensor(beta).to('cuda')) # canonical body with shape
# vertices_cam0 = smpl_body_cam0.vertices.detach().cpu().numpy().squeeze()
# joints_cam0 = smpl_body_cam0.joints.detach().cpu().numpy()
# pelvis_cam0 = joints_cam0[:, 0, :]
# ## rigid transformation between multi-ioi and Leica scan (world)
# with open(ioi2scan_fn, 'r') as f:
# ioi2scan_dict = json.load(f)
# R_ioi2world = np.array(ioi2scan_dict['R']) # Note: R is transposed
# t_ioi2world= np.array(ioi2scan_dict['t']).reshape(1, 3)
# # get SMPL params in world coordinates
# # import ipdb; ipdb.set_trace()
# global_orient_world = np.matmul(R_ioi2world.T, global_orient)
# transl_world = np.matmul((pelvis_cam0+transl), R_ioi2world) + t_ioi2world - pelvis_cam0 # right multiplication to avoid transpose
# full_pose_rotmat_world = np.concatenate((global_orient_world, pose_rotmat), axis=0).squeeze()
# theta_world = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_world)).reshape(-1, 66).cpu().numpy()
# smpl_body_world = body_model(betas=torch.FloatTensor(beta).to('cuda'),
# body_pose=torch.FloatTensor(theta_world[:, 3:]).to('cuda'),
# transl=torch.FloatTensor(transl_world).to('cuda'),
# global_orient=torch.FloatTensor(theta_world[:, :3]).to('cuda'))
# vertices_world = smpl_body_world.vertices.detach().cpu().numpy().squeeze()
# joints3d_world = smpl_body_world.joints[:, 25:, :].detach().cpu().numpy().squeeze()
# mesh = trimesh.Trimesh(vertices_world, body_model.faces,
# process=False,
# maintain_order=True)
# mesh.export('gt_mesh_world_smplx.obj')
# # smpl_body_world = body_model(betas=torch.FloatTensor(beta).to('cuda'),
# # body_pose=torch.FloatTensor(pose_rotmat[None, ...]).to('cuda'),
# # transl=torch.FloatTensor(transl_world[None, ...]).to('cuda'),
# # global_orient=torch.FloatTensor(global_orient_world[None, ...]).to('cuda'),
# # left_hand_pose=torch.eye(3).reshape(1, 1, 3, 3).expand(1, 15, -1, -1).to('cuda'),
# # right_hand_pose=torch.eye(3).reshape(1, 1, 3, 3).expand(1, 15, -1, -1).to('cuda'),
# # leye_pose= torch.eye(3).reshape(1, 1, 3, 3).expand(batch_size, -1, -1, -1),
# #
# # pose2rot=False)
# # vertices_world = smpl_body_world.vertices.detach().cpu().numpy().squeeze()
# # joints3d_world = smpl_body_world.joints[:, 25:, :].detach().cpu().numpy().squeeze()
# # mesh = trimesh.Trimesh(vertices_world, body_model.faces,
# # process=False,
# # maintain_order=True)
# # mesh.export('gt_mesh_world_smplx.obj')
# # get SMPL params in camera coordinates
# global_orient_cam = np.matmul(camR, global_orient)
# transl_cam = np.matmul(camR, (pelvis_cam0 + transl).T).T + camT - pelvis_cam0
# full_pose_rotmat_cam = np.concatenate((global_orient_cam, pose_rotmat), axis=0).squeeze()
# theta_cam = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_cam)).reshape(-1, 66).cpu().numpy()
# # smpl_body_cam = body_model(betas=torch.FloatTensor(beta).to('cuda'),
# # body_pose=torch.FloatTensor(pose_rotmat).to('cuda'),
# # transl=torch.FloatTensor(transl_cam).to('cuda'),
# # global_orient=torch.FloatTensor(global_orient_cam).to('cuda'),
# # pose2rot=False)
# # vertices_cam = smpl_body_cam.vertices.detach().cpu().numpy().squeeze()
# # joints3d_cam = smpl_body_cam.joints[:, 25:, :].detach().cpu().numpy().squeeze()
# #
# # mesh = trimesh.Trimesh(vertices_cam, body_model.faces,
# # process=False,
# # maintain_order=True)
# # mesh.export('mesh_in_cam0.obj')
# # read GT 2D keypoints
# K = np.eye(3, dtype=np.float)
# K[0, 0] = focal_length_x / downsample_factor
# K[1, 1] = focal_length_y / downsample_factor
# K[:2, 2:] = camC.T / downsample_factor
# # projected_points = (K @ joints3d_cam.T).T
# # joints2d = projected_points[:, :2] / np.hstack((projected_points[:, 2:], projected_points[:, 2:]))
# # part = np.hstack((joints2d, np.ones((joints2d.shape[0], 1))))
# # get openpose 2D keypoints
# try:
# with open(openpose_path, 'r') as f:
# openpose = json.load(f)
# openpose = np.array(openpose['people'][0]['pose_keypoints_2d']).reshape([-1, 3])
# except:
# print(f'No openpose !! Missing {openpose_path}')
# continue
# # get camera parameters wrt to scan
# R_worldtocam = np.matmul(camR, R_ioi2world) # Note: R_ioi2world is transposed
# T_worldtocam = -t_ioi2world + camT
# # ground offset
# # ground_offset = ground_eq[2]/
# # # get stability labels: 1: stable, 0: unstable but in contact, -1: unstable and not `in contact
# # in_bos_label, contact_label, contact_mask = vis_smpl_with_ground(theta_world, transl_world, beta, seq_i,
# # vis_path,
# # start_idx=frame_num,
# # sub_sample=1,
# # ground_offset=ground_offset,
# # smpl_batch_size=1,
# # visualize=False)
# # in_bos_label = in_bos_label.detach().cpu().numpy()
# # contact_label = contact_label.detach().cpu().numpy()
# # contact_mask = contact_mask.detach().cpu().numpy()
# # visualize world smpl on ground plane
# # if visualize:
# # if cam_num == 0:
# # vis_smpl_with_ground(theta_world, transl_world, beta, split+'_'+seq_i, vis_path,
# # start_idx=frame_num,
# # sub_sample=1,
# # ground_offset=ground_offset,
# # smpl_batch_size=1,
# # visualize=True)
# # ## visualize projected points
# # img = cv2.imread(img_path)
# # joints2d = joints2d.astype(np.int)
# # img[joints2d[:, 1], joints2d[:, 0], :] = [0, 255, 0]
# # read GT 3D pose in cam coordinates
# # S24 = joints3d_cam
# # pelvis_cam = (S24[[2], :] + S24[[3], :]) / 2
# # S24 -= pelvis_cam
# # S24 = np.hstack([S24, np.ones((S24.shape[0], 1))])
# # read GT 3D pose in world coordinates
# # S24_world = joints3d_world
# # S24_world = np.hstack([S24_world, np.ones((S24_world.shape[0], 1))])
# # store data
# imgnames_.append(img_path)
# centers_.append(center)
# scales_.append(scale)
# # parts_.append(part)
# # Ss_.append(S24)
# # Ss_world_.append(S24_world)
# openposes_.append(openpose)
# poses_.append(theta_cam.squeeze())
# transls_.append(transl.squeeze())
# poses_world_.append(theta_world.squeeze())
# transls_world_.append(transl_world.squeeze())
# shapes_.append(beta.squeeze())
# cams_r_.append(R_worldtocam.tolist())
# # Todo: note that T_worldtocam here is (1,3) whereas in h36m T_worldtocam is (1,3)
# cams_t_.append(T_worldtocam.tolist())
# cams_k_.append(K.tolist())
# # in_bos_label_.append(in_bos_label)
# # contact_label_.append(contact_label)
# ground_offset_.append(ground_offset)
# store the data struct
if not os.path.isdir(out_path):
os.makedirs(out_path)
out_file = os.path.join(out_path, f'rich_{scene_name}_smplx.npz')
np.savez(out_file, imgname=imgnames_,
# center=centers_,
# scale=scales_,
# part=parts_,
# S=Ss_,
# S_world=Ss_world_,
pose=poses_,
transl=transls_,
shape=shapes_,
# openpose=openposes_,
# pose_world=poses_world_,
# transl_world=transls_world_,
# cam_r=cams_r_,
# cam_t=cams_t_,
cam_k=cams_k_,
# in_bos_label=in_bos_label_,
contact_label=contact_label_,
# ground_offset=ground_offset_
scene_seg=scene_seg_,
part_seg=part_seg_
)
print('Saved to ', out_file)
def rectify_pose(camera_r, body_aa):
body_r = batch_rodrigues(body_aa).reshape(-1,3,3)
final_r = camera_r @ body_r
body_aa = batch_rot2aa(final_r)
return body_aa
def extract_cam_param_xml(xml_path: str = '', dtype=float):
import xml.etree.ElementTree as ET
tree = ET.parse(xml_path)
extrinsics_mat = [float(s) for s in tree.find('./CameraMatrix/data').text.split()]
intrinsics_mat = [float(s) for s in tree.find('./Intrinsics/data').text.split()]
distortion_vec = [float(s) for s in tree.find('./Distortion/data').text.split()]
focal_length_x = intrinsics_mat[0]
focal_length_y = intrinsics_mat[4]
center = np.array([[intrinsics_mat[2], intrinsics_mat[5]]], dtype=dtype)
rotation = np.array([[extrinsics_mat[0], extrinsics_mat[1], extrinsics_mat[2]],
[extrinsics_mat[4], extrinsics_mat[5], extrinsics_mat[6]],
[extrinsics_mat[8], extrinsics_mat[9], extrinsics_mat[10]]], dtype=dtype)
translation = np.array([[extrinsics_mat[3], extrinsics_mat[7], extrinsics_mat[11]]], dtype=dtype)
# t = -Rc --> c = -R^Tt
cam_center = [-extrinsics_mat[0] * extrinsics_mat[3] - extrinsics_mat[4] * extrinsics_mat[7] - extrinsics_mat[8] *
extrinsics_mat[11],
-extrinsics_mat[1] * extrinsics_mat[3] - extrinsics_mat[5] * extrinsics_mat[7] - extrinsics_mat[9] *
extrinsics_mat[11],
-extrinsics_mat[2] * extrinsics_mat[3] - extrinsics_mat[6] * extrinsics_mat[7] - extrinsics_mat[10] *
extrinsics_mat[11]]
cam_center = np.array([cam_center], dtype=dtype)
k1 = np.array([distortion_vec[0]], dtype=dtype)
k2 = np.array([distortion_vec[1]], dtype=dtype)
return focal_length_x, focal_length_y, center, rotation, translation, cam_center, k1, k2
# rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/work/achatterjee/rich/npzs', split='train')
# rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/fast/achatterjee/rich/scene_npzs', split='val')
# rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/fast/achatterjee/rich/scene_npzs/test', split='test')
# rich_extract(dataset_path='/ps/scratch/ps_shared/stripathi/4yogi/RICH/val/', out_path='/home/achatterjee/rich_ext', split='val')
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int)
args = parser.parse_args()
rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/fast/achatterjee/rich/scene_npzs/test', scene_indx=args.index, split='test') |