File size: 30,358 Bytes
99a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import os
os.environ["CDF_LIB"] = "/is/cluster/scratch/stripathi/data/cdf37_1-dist/src/lib"

import cv2
import pandas as pd
# import json
# import glob
# import h5py
import torch
# import trimesh
import numpy as np
import pickle as pkl
# from xml.dom import minidom
# import xml.etree.ElementTree as ET
from tqdm import tqdm
from spacepy import pycdf
# from .read_openpose import read_openpose
import sys
sys.path.append('../../')
# from models import hmr, SMPL
# import config
# import constants
import argparse

# import shutil

import smplx
import pytorch3d.transforms as p3dt

from utils.geometry import batch_rodrigues, batch_rot2aa, ea2rm
# from vis_utils.world_vis import overlay_mesh, vis_smpl_with_ground


model_type = 'smplx'
model_folder = '/ps/project/common/smplifyx/models/'
body_model_params = dict(model_path=model_folder,
                         model_type=model_type,
                         create_global_orient=True,
                         create_body_pose=True,
                         create_betas=True,
                         num_betas=10,
                         create_left_hand_pose=True,
                         create_right_hand_pose=True,
                         create_expression=True,
                         create_jaw_pose=True,
                         create_leye_pose=True,
                         create_reye_pose=True,
                         create_transl=True,
                         use_pca=False)
body_model = smplx.create(gender='neutral', **body_model_params).to('cuda')

def rich_extract(img_dataset_path, out_path, scene_indx, split=None, vis_path=None, visualize=False, downsample_factor=1):
    
    # structs we use
    imgnames_ = []
    # scales_, centers_, parts_, Ss_, Ss_world_, openposes_ = [], [], [], [], [], []
    poses_, shapes_, transls_ = [], [], []
    # poses_world_, transls_world_, cams_r_, cams_t_ = [], [], [], []
    cams_k_ = []
    # ground_offset_ = []
    # in_bos_label_ = []
    contact_label_ = []
    scene_seg_, part_seg_ = [], []

    # # seqs in validation set
    # if split == 'val':
    #     seq_list = ['2021-06-15_Multi_IOI_ID_00176_Yoga2',
    #                 '2021-06-15_Multi_IOI_ID_00228_Yoga1',
    #                 '2021-06-15_Multi_IOI_ID_03588_Yoga1',
    #                 '2021-06-15_Multi_IOI_ID_00176_Yoga1']

    # # seqs in testing set
    # if split == 'test':
    #     seq_list = ['2021-06-15_Multi_IOI_ID_00186_Yoga1',
    #                 '2021-06-15_Multi_IOI_ID_03588_Yoga2',
    #                 'MultiIOI_201019_ID03581_parkingLot_Calibration06_Settings06_PushUp__2',
    #                 'Multi-IOI_ID00227_Scene_ParkingLot_Calibration_03_CameraSettings_4_pushup_1']
    
    scenes = sorted(os.listdir('/ps/project/datasets/RICH/rich_toolkit/data/images/test'))
    # scene = scenes[scene_indx]
    scene = 'ParkingLot2_009_impro5'
    
    for scene_name in [scene]:
    # for scene_name in ['LectureHall_003_wipingchairs1']:
        out_file = os.path.join(out_path, f'rich_{scene_name}_smplx.npz')
        if os.path.exists(out_file): return
        print(scene_name)
        for i, fl in tqdm(enumerate(sorted(os.listdir(os.path.join(img_dataset_path, 'images', split)))), dynamic_ncols=True):
            if not scene_name in fl: continue

            ind = fl.index('cam')
            location = fl[:ind-1]

            cam_num = fl[ind:ind+6]

            img = fl[ind+7:-3] + 'jpeg'

            imgname = os.path.join(location, cam_num, img)

            mask_name = fl
            sp = mask_name.split('_')
            indx = mask_name.index('cam')
            st = mask_name[indx-1:indx+7]
            mask_name = mask_name.replace(st, '/')
            mask_name = mask_name[:-7]
            new_p = mask_name.split('/')
            mask_name = new_p[0] + '/' + new_p[1] + '/' + sp[1] + '.pkl'
            mask_path = os.path.join(img_dataset_path, 'labels', split, mask_name)
            df = pd.read_pickle(mask_path)
            mask = df['contact'] 

            scene_path = os.path.join('/ps/scratch/ps_shared/stripathi/deco/4agniv/rich/seg_masks_new', split, fl[:-3] + 'png')

            part_path = os.path.join('/ps/scratch/ps_shared/stripathi/deco/4agniv/rich/part_masks_new', split, fl[:-3] + 'png')

            dataset_path = '/ps/project/datasets/RICH'

            ind = fl.index('cam')
            frame_id = fl[:ind-1]
            location = frame_id.split('_')[0]

            if location == 'LectureHall':
                if 'chair' in frame_id:
                    cam2world_location = location + '_' + 'chair'
                else:
                    cam2world_location = location + '_' + 'yoga'  
            else:
                cam2world_location = location        

            img_num = fl.split('_')[-2]

            cam_num = int(fl.split('_')[-1][:2])

            # get ioi2scan transformation per sequence
            ioi2scan_fn = os.path.join(dataset_path, 'website_release/multicam2world', cam2world_location + '_multicam2world.json')

            try:
                camera_fn = os.path.join(dataset_path, 'rich_toolkit/data/scan_calibration', location, f'calibration/{cam_num:03d}.xml')
                focal_length_x, focal_length_y, camC, camR, camT, _, _, _ = extract_cam_param_xml(camera_fn)
            except:
                print(f'camera calibration file not found: {camera_fn}')
                continue

            # print('X: ', focal_length_x)
            # print('Y: ', focal_length_y)
            
            # path to smpl params
            smplx_param = os.path.join(dataset_path, 'rich_toolkit/data/bodies', split, frame_id, str(img_num), frame_id.split('_')[1] + '.pkl')

            # # path to GT bounding boxes
            # bbox_path = os.path.join(dataset_path, 'preprocessed', split, frame_id, img_num, frame_id.split('_')[1], 'bbox_refine', f'{img_num}_{cam_num:02d}.json')
            # # path with 2D openpose keypoints
            # openpose_path = os.path.join(dataset_path, 'preprocessed', split, frame_id, img_num, frame_id.split('_')[1], 'keypoints_refine', f'{img_num}_{str(cam_num).zfill(2)}_keypoints.json')
            # # path to image crops
            # img_path = os.path.join(dataset_path, 'preprocessed', split, frame_id, img_num, frame_id.split('_')[1], 'images_refine', f'{img_num}_{cam_num:02d}.png')

            # # bbox file
            # try:
            #     with open(bbox_path, 'r') as f:
            #         bbox_dict = json.load(f)
            # except:
            #     print(f'bbox file not found: {bbox_path}')
            #     continue

            # # read GT bounding box
            # x1_ul = bbox_dict['x1'] // downsample_factor
            # y1_ul = bbox_dict['y1'] // downsample_factor
            # x2_br = bbox_dict['x2'] // downsample_factor
            # y2_br = bbox_dict['y2'] // downsample_factor
            # bbox = np.array([x1_ul, y1_ul, x2_br, y2_br])
            # center = [(bbox[2]+bbox[0])/2, (bbox[3]+bbox[1])/2]
            # scale = 0.9 * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 200.

            # get smpl parameters
            ## body resides in multi-ioi coordidate, where camera 0 is world zero.
            with open(smplx_param, 'rb') as f:
                body_params = pkl.load(f)
                # in ioi coordinates: cam 0
                beta = body_params['betas']
                pose_aa = body_params['body_pose']
                pose_rotmat = p3dt.axis_angle_to_matrix(torch.FloatTensor(pose_aa.reshape(-1,3))).numpy()

                transl = body_params['transl']
                global_orient = body_params['global_orient']
                global_orient = p3dt.axis_angle_to_matrix(torch.FloatTensor(global_orient.reshape(-1,3))).numpy()

            smpl_body_cam0 = body_model(betas=torch.FloatTensor(beta).to('cuda')) # canonical body with shape
            vertices_cam0 = smpl_body_cam0.vertices.detach().cpu().numpy().squeeze()
            joints_cam0 = smpl_body_cam0.joints.detach().cpu().numpy()
            pelvis_cam0 = joints_cam0[:, 0, :]

            # ## rigid transformation between multi-ioi and Leica scan (world)
            # with open(ioi2scan_fn, 'r') as f:
            #     ioi2scan_dict = json.load(f)
            #     R_ioi2world = np.array(ioi2scan_dict['R']) # Note: R is transposed
            #     t_ioi2world= np.array(ioi2scan_dict['t']).reshape(1, 3)     

            # # # get SMPL params in world coordinates
            # # # import ipdb; ipdb.set_trace()
            # global_orient_world = np.matmul(R_ioi2world.T, global_orient)
            # transl_world = np.matmul((pelvis_cam0+transl), R_ioi2world) + t_ioi2world - pelvis_cam0 # right multiplication to avoid transpose
            # full_pose_rotmat_world = np.concatenate((global_orient_world, pose_rotmat), axis=0).squeeze()
            # theta_world = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_world)).reshape(-1, 66).cpu().numpy()

            # smpl_body_world = body_model(betas=torch.FloatTensor(beta).to('cuda'),
            #                             body_pose=torch.FloatTensor(theta_world[:, 3:]).to('cuda'),
            #                             transl=torch.FloatTensor(transl_world).to('cuda'),
            #                             global_orient=torch.FloatTensor(theta_world[:, :3]).to('cuda'))
            # vertices_world = smpl_body_world.vertices.detach().cpu().numpy().squeeze()
            # joints3d_world = smpl_body_world.joints[:, 25:, :].detach().cpu().numpy().squeeze()

            # # get SMPL params in camera coordinates
            global_orient_cam = np.matmul(np.array(camR), global_orient)
            transl_cam = np.matmul(camR, (pelvis_cam0 + transl).T).T + camT - pelvis_cam0
            full_pose_rotmat_cam = np.concatenate((global_orient_cam, pose_rotmat), axis=0).squeeze()
            theta_cam = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_cam)).reshape(-1, 66).cpu().numpy()

            # read GT 2D keypoints
            K = np.eye(3, dtype=np.float64)
            K[0, 0] = focal_length_x / downsample_factor
            K[1, 1] = focal_length_y / downsample_factor
            K[:2, 2:] = camC.T / downsample_factor

            # # get openpose 2D keypoints
            # try:
            #     with open(openpose_path, 'r') as f:
            #         openpose = json.load(f)
            #     openpose = np.array(openpose['people'][0]['pose_keypoints_2d']).reshape([-1, 3])
            # except:
            #     print(f'No openpose !! Missing {openpose_path}')
            #     continue

            # get camera parameters wrt to scan
            # R_worldtocam = np.matmul(camR, R_ioi2world) # Note: R_ioi2world is transposed
            # T_worldtocam = -t_ioi2world + camT

            # ground offset
            # ground_offset = ground_eq[2]

            # store data
            jpg_img_path = os.path.join('/ps/project/datasets/RICH_JPG', split, imgname)
            bmp_img_path = jpg_img_path.replace('/ps/project/datasets/RICH_JPG', '/ps/project/datasets/RICH/rich_toolkit/data/images')
            bmp_img_path = bmp_img_path.replace('.jpeg', '.bmp')
            if not os.path.exists(bmp_img_path):
                bmp_img_path = bmp_img_path.replace('.bmp', '.png')
            imgnames_.append(bmp_img_path)
            contact_label_.append(mask)
            scene_seg_.append(scene_path)
            part_seg_.append(part_path)
            # centers_.append(center)
            # scales_.append(scale)
            # openposes_.append(openpose)
            poses_.append(theta_cam.squeeze())
            transls_.append(transl_cam.squeeze())
            # poses_world_.append(theta_world.squeeze())
            # transls_world_.append(transl_world.squeeze())
            shapes_.append(beta.squeeze())
            # cams_r_.append(R_worldtocam.tolist())
            # # Todo: note that T_worldtocam here is (1,3) whereas in h36m T_worldtocam is (1,3)
            # cams_t_.append(T_worldtocam.tolist())
            cams_k_.append(K.tolist())
            # ground_offset_.append(ground_offset)

        # for seq_i in tqdm(seq_list):
        #     print(f'Processing sequence: {seq_i}')

        #     # path with GT bounding boxes
        #     params_path = os.path.join(dataset_path, seq_i, 'params')

        #     # path to metadata for files
        #     md_path = os.path.join(dataset_path, seq_i, 'data')

        #     # glob all folders in params path
        #     frame_param_paths = sorted(glob.glob(os.path.join(params_path, '*')))
        #     frame_param_paths = [p for p in frame_param_paths if '.yaml' not in p]

        #     # get ioi2scan transformation per sequence
        #     ioi2scan_fn = os.path.join(dataset_path, seq_i, 'cam2scan.json')

        #     ## ground resides in Leica scan coordinate, which is (roughly) axis aligned.
        #     # ground_mesh = trimesh.load(os.path.join(dataset_path, seq_i, 'ground_mesh.ply'), process=False)
        #     # ground_eq = np.mean(ground_mesh.vertices, axis=0)

        #     # list all files in the folder
        #     cam_files = os.listdir(os.path.join(dataset_path, seq_i, f'calibration'))
        #     cam_list = sorted([int(os.path.splitext(f)[0]) for f in cam_files if '.xml' in f])

        #     # if split == 'val':
        #     #     cam_list = cam_list[1:] # remove first camera in val
        #     for cam_num in cam_list[:1]:
        #         camera_fn = os.path.join(dataset_path, seq_i, f'calibration/{cam_num:03d}.xml')
        #         focal_length_x, focal_length_y, camC, camR, camT, _, _, _ = extract_cam_param_xml(camera_fn)

        #         for frame_param_path in tqdm(frame_param_paths):
        #             frame_id = os.path.basename(frame_param_path)
        #             frame_num = int(frame_id)

        #             # path to smpl params
        #             try:
        #                 smplx_param = os.path.join(frame_param_path, '00', 'results/000.pkl')
        #             except:
        #                 import ipdb; ipdb.set_trace()

        #             # path to GT bounding boxes
        #             bbox_path = os.path.join(md_path, frame_id, '00', 'bbox_refine', f'{frame_id}_{cam_num:02d}.json')
        #             # path with 2D openpose keypoints
        #             openpose_path = os.path.join(md_path, frame_id, '00', 'keypoints_refine', f'{frame_id}_{str(cam_num).zfill(2)}_keypoints.json')
        #             # path to image crops
        #             if downsample_factor == 1:
        #                 img_path = os.path.join(md_path, frame_id, '00', 'images_orig', f'{frame_id}_{cam_num:02d}.png')
        #             else:
        #                 img_path = os.path.join(md_path, frame_id, '00', 'images_orig_720p', f'{frame_id}_{cam_num:02d}.png')

        #             if not os.path.isfile(img_path):
        #                 print(f'image not found: {img_path}')
        #                 continue
        #                 # raise FileNotFoundError

        #             # bbox file
        #             try:
        #                 with open(bbox_path, 'r') as f:
        #                     bbox_dict = json.load(f)
        #             except:
        #                 print(f'bbox file not found: {bbox_path}')
        #                 continue
        #             # read GT bounding box
        #             x1_ul = bbox_dict['x1'] // downsample_factor
        #             y1_ul = bbox_dict['y1'] // downsample_factor
        #             x2_br = bbox_dict['x2'] // downsample_factor
        #             y2_br = bbox_dict['y2'] // downsample_factor
        #             bbox = np.array([x1_ul, y1_ul, x2_br, y2_br])
        #             center = [(bbox[2]+bbox[0])/2, (bbox[3]+bbox[1])/2]
        #             scale = 0.9 * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 200.

        #             # get smpl parameters
        #             ## body resides in multi-ioi coordidate, where camera 0 is world zero.
        #             with open(smplx_param, 'rb') as f:
        #                 body_params = pkl.load(f)
        #                 # in ioi coordinates: cam 0
        #                 beta = body_params['betas']
        #                 pose_aa = body_params['body_pose']
        #                 pose_rotmat = p3dt.axis_angle_to_matrix(torch.FloatTensor(pose_aa.reshape(-1,3))).numpy()

        #                 transl = body_params['transl']
        #                 global_orient = body_params['global_orient']
        #                 global_orient = p3dt.axis_angle_to_matrix(torch.FloatTensor(global_orient.reshape(-1,3))).numpy()

        #             smpl_body_cam0 = body_model(betas=torch.FloatTensor(beta).to('cuda')) # canonical body with shape
        #             vertices_cam0 = smpl_body_cam0.vertices.detach().cpu().numpy().squeeze()
        #             joints_cam0 = smpl_body_cam0.joints.detach().cpu().numpy()
        #             pelvis_cam0 = joints_cam0[:, 0, :]


        #             ## rigid transformation between multi-ioi and Leica scan (world)
        #             with open(ioi2scan_fn, 'r') as f:
        #                 ioi2scan_dict = json.load(f)
        #                 R_ioi2world = np.array(ioi2scan_dict['R']) # Note: R is transposed
        #                 t_ioi2world= np.array(ioi2scan_dict['t']).reshape(1, 3)

        #             # get SMPL params in world coordinates
        #             # import ipdb; ipdb.set_trace()
        #             global_orient_world = np.matmul(R_ioi2world.T, global_orient)
        #             transl_world = np.matmul((pelvis_cam0+transl), R_ioi2world) + t_ioi2world - pelvis_cam0 # right multiplication to avoid transpose
        #             full_pose_rotmat_world = np.concatenate((global_orient_world, pose_rotmat), axis=0).squeeze()
        #             theta_world = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_world)).reshape(-1, 66).cpu().numpy()

        #             smpl_body_world = body_model(betas=torch.FloatTensor(beta).to('cuda'),
        #                                 body_pose=torch.FloatTensor(theta_world[:, 3:]).to('cuda'),
        #                                 transl=torch.FloatTensor(transl_world).to('cuda'),
        #                                 global_orient=torch.FloatTensor(theta_world[:, :3]).to('cuda'))
        #             vertices_world = smpl_body_world.vertices.detach().cpu().numpy().squeeze()
        #             joints3d_world = smpl_body_world.joints[:, 25:, :].detach().cpu().numpy().squeeze()

        #             mesh = trimesh.Trimesh(vertices_world, body_model.faces,
        #                                    process=False,
        #                                    maintain_order=True)
        #             mesh.export('gt_mesh_world_smplx.obj')



        #             # smpl_body_world = body_model(betas=torch.FloatTensor(beta).to('cuda'),
        #             #                     body_pose=torch.FloatTensor(pose_rotmat[None, ...]).to('cuda'),
        #             #                     transl=torch.FloatTensor(transl_world[None, ...]).to('cuda'),
        #             #                     global_orient=torch.FloatTensor(global_orient_world[None, ...]).to('cuda'),
        #             #                     left_hand_pose=torch.eye(3).reshape(1, 1, 3, 3).expand(1, 15, -1, -1).to('cuda'),
        #             #                     right_hand_pose=torch.eye(3).reshape(1, 1, 3, 3).expand(1, 15, -1, -1).to('cuda'),
        #             #                     leye_pose= torch.eye(3).reshape(1, 1, 3, 3).expand(batch_size, -1, -1, -1),
        #             #
        #             #                       pose2rot=False)
        #             # vertices_world = smpl_body_world.vertices.detach().cpu().numpy().squeeze()
        #             # joints3d_world = smpl_body_world.joints[:, 25:, :].detach().cpu().numpy().squeeze()

        #             # mesh = trimesh.Trimesh(vertices_world, body_model.faces,
        #             #                        process=False,
        #             #                        maintain_order=True)
        #             # mesh.export('gt_mesh_world_smplx.obj')

        #             # get SMPL params in camera coordinates
        #             global_orient_cam = np.matmul(camR, global_orient)
        #             transl_cam = np.matmul(camR, (pelvis_cam0 + transl).T).T + camT - pelvis_cam0
        #             full_pose_rotmat_cam = np.concatenate((global_orient_cam, pose_rotmat), axis=0).squeeze()
        #             theta_cam = batch_rot2aa(torch.FloatTensor(full_pose_rotmat_cam)).reshape(-1, 66).cpu().numpy()
        #             # smpl_body_cam = body_model(betas=torch.FloatTensor(beta).to('cuda'),
        #             #                          body_pose=torch.FloatTensor(pose_rotmat).to('cuda'),
        #             #                          transl=torch.FloatTensor(transl_cam).to('cuda'),
        #             #                            global_orient=torch.FloatTensor(global_orient_cam).to('cuda'),
        #             #                            pose2rot=False)
        #             # vertices_cam = smpl_body_cam.vertices.detach().cpu().numpy().squeeze()
        #             # joints3d_cam = smpl_body_cam.joints[:, 25:, :].detach().cpu().numpy().squeeze()
        #             #
        #             # mesh = trimesh.Trimesh(vertices_cam, body_model.faces,
        #             #                        process=False,
        #             #                        maintain_order=True)
        #             # mesh.export('mesh_in_cam0.obj')

        #             # read GT 2D keypoints
        #             K = np.eye(3, dtype=np.float)
        #             K[0, 0] = focal_length_x / downsample_factor
        #             K[1, 1] = focal_length_y / downsample_factor
        #             K[:2, 2:] = camC.T / downsample_factor
        #             # projected_points = (K @ joints3d_cam.T).T
        #             # joints2d = projected_points[:, :2] / np.hstack((projected_points[:, 2:], projected_points[:, 2:]))
        #             # part = np.hstack((joints2d, np.ones((joints2d.shape[0], 1))))

        #             # get openpose 2D keypoints
        #             try:
        #                 with open(openpose_path, 'r') as f:
        #                     openpose = json.load(f)
        #                 openpose = np.array(openpose['people'][0]['pose_keypoints_2d']).reshape([-1, 3])
        #             except:
        #                 print(f'No openpose !! Missing {openpose_path}')
        #                 continue

        #             # get camera parameters wrt to scan
        #             R_worldtocam = np.matmul(camR, R_ioi2world) # Note: R_ioi2world is transposed
        #             T_worldtocam = -t_ioi2world + camT

        #             # ground offset
        #             # ground_offset = ground_eq[2]/

        #             # # get stability labels: 1: stable, 0: unstable but in contact, -1: unstable and not `in contact
        #             # in_bos_label, contact_label, contact_mask = vis_smpl_with_ground(theta_world, transl_world, beta, seq_i,
        #             #                                                      vis_path,
        #             #                                                      start_idx=frame_num,
        #             #                                                      sub_sample=1,
        #             #                                                      ground_offset=ground_offset,
        #             #                                                      smpl_batch_size=1,
        #             #                                                      visualize=False)
        #             # in_bos_label = in_bos_label.detach().cpu().numpy()
        #             # contact_label = contact_label.detach().cpu().numpy()
        #             # contact_mask = contact_mask.detach().cpu().numpy()

        #             # visualize world smpl on ground plane
        #             # if visualize:
        #             #     if cam_num == 0:
        #             #         vis_smpl_with_ground(theta_world, transl_world, beta, split+'_'+seq_i, vis_path,
        #             #                              start_idx=frame_num,
        #             #                              sub_sample=1,
        #             #                              ground_offset=ground_offset,
        #             #                              smpl_batch_size=1,
        #             #                              visualize=True)


        #             # ## visualize projected points
        #             # img = cv2.imread(img_path)
        #             # joints2d = joints2d.astype(np.int)
        #             # img[joints2d[:, 1], joints2d[:, 0], :] = [0, 255, 0]

        #             # read GT 3D pose in cam coordinates
        #             # S24 = joints3d_cam
        #             # pelvis_cam = (S24[[2], :] + S24[[3], :]) / 2
        #             # S24 -= pelvis_cam
        #             # S24 = np.hstack([S24, np.ones((S24.shape[0], 1))])

        #             # read GT 3D pose in world coordinates
        #             # S24_world = joints3d_world
        #             # S24_world = np.hstack([S24_world, np.ones((S24_world.shape[0], 1))])

        #             # store data
        #             imgnames_.append(img_path)
        #             centers_.append(center)
        #             scales_.append(scale)
        #             # parts_.append(part)
        #             # Ss_.append(S24)
        #             # Ss_world_.append(S24_world)
        #             openposes_.append(openpose)
        #             poses_.append(theta_cam.squeeze())
        #             transls_.append(transl.squeeze())
        #             poses_world_.append(theta_world.squeeze())
        #             transls_world_.append(transl_world.squeeze())
        #             shapes_.append(beta.squeeze())
        #             cams_r_.append(R_worldtocam.tolist())
        #             # Todo: note that T_worldtocam here is (1,3) whereas in h36m T_worldtocam is (1,3)
        #             cams_t_.append(T_worldtocam.tolist())
        #             cams_k_.append(K.tolist())
        #             # in_bos_label_.append(in_bos_label)
        #             # contact_label_.append(contact_label)
        #             ground_offset_.append(ground_offset)


        # store the data struct
        if not os.path.isdir(out_path):
            os.makedirs(out_path)
        out_file = os.path.join(out_path, f'rich_{scene_name}_smplx.npz')
        np.savez(out_file, imgname=imgnames_,
                        #    center=centers_,
                        #    scale=scales_,
                        #    part=parts_,
                        #    S=Ss_,
                        #    S_world=Ss_world_,
                        pose=poses_,
                        transl=transls_,
                        shape=shapes_,
                        #    openpose=openposes_,
                        #    pose_world=poses_world_,
                        #    transl_world=transls_world_,
                        #    cam_r=cams_r_,
                        #    cam_t=cams_t_,
                        cam_k=cams_k_,
                        #    in_bos_label=in_bos_label_,
                        contact_label=contact_label_,
                        #    ground_offset=ground_offset_
                            scene_seg=scene_seg_,
                            part_seg=part_seg_
                )
        print('Saved to ', out_file)

def rectify_pose(camera_r, body_aa):
    body_r = batch_rodrigues(body_aa).reshape(-1,3,3)
    final_r = camera_r @ body_r
    body_aa = batch_rot2aa(final_r)
    return body_aa


def extract_cam_param_xml(xml_path: str = '', dtype=float):
    import xml.etree.ElementTree as ET
    tree = ET.parse(xml_path)

    extrinsics_mat = [float(s) for s in tree.find('./CameraMatrix/data').text.split()]
    intrinsics_mat = [float(s) for s in tree.find('./Intrinsics/data').text.split()]
    distortion_vec = [float(s) for s in tree.find('./Distortion/data').text.split()]

    focal_length_x = intrinsics_mat[0]
    focal_length_y = intrinsics_mat[4]
    center = np.array([[intrinsics_mat[2], intrinsics_mat[5]]], dtype=dtype)

    rotation = np.array([[extrinsics_mat[0], extrinsics_mat[1], extrinsics_mat[2]],
                         [extrinsics_mat[4], extrinsics_mat[5], extrinsics_mat[6]],
                         [extrinsics_mat[8], extrinsics_mat[9], extrinsics_mat[10]]], dtype=dtype)

    translation = np.array([[extrinsics_mat[3], extrinsics_mat[7], extrinsics_mat[11]]], dtype=dtype)

    # t = -Rc --> c = -R^Tt
    cam_center = [-extrinsics_mat[0] * extrinsics_mat[3] - extrinsics_mat[4] * extrinsics_mat[7] - extrinsics_mat[8] *
                  extrinsics_mat[11],
                  -extrinsics_mat[1] * extrinsics_mat[3] - extrinsics_mat[5] * extrinsics_mat[7] - extrinsics_mat[9] *
                  extrinsics_mat[11],
                  -extrinsics_mat[2] * extrinsics_mat[3] - extrinsics_mat[6] * extrinsics_mat[7] - extrinsics_mat[10] *
                  extrinsics_mat[11]]

    cam_center = np.array([cam_center], dtype=dtype)

    k1 = np.array([distortion_vec[0]], dtype=dtype)
    k2 = np.array([distortion_vec[1]], dtype=dtype)

    return focal_length_x, focal_length_y, center, rotation, translation, cam_center, k1, k2

# rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/work/achatterjee/rich/npzs', split='train')
# rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/fast/achatterjee/rich/scene_npzs', split='val')
# rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/fast/achatterjee/rich/scene_npzs/test', split='test')
# rich_extract(dataset_path='/ps/scratch/ps_shared/stripathi/4yogi/RICH/val/', out_path='/home/achatterjee/rich_ext', split='val')

if __name__=='__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--index', type=int)
    args = parser.parse_args()

    rich_extract(img_dataset_path='/is/cluster/work/achatterjee/rich', out_path='/is/cluster/fast/achatterjee/rich/scene_npzs/test', scene_indx=args.index, split='test')