File size: 8,414 Bytes
5ae9c92
 
 
 
 
7ca15bd
99a05f0
7ca15bd
 
 
 
5ae9c92
73849f0
 
 
9f6d75b
73849f0
5ae9c92
 
 
 
 
 
 
 
1169f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f86309
1169f2a
 
 
 
 
 
 
 
 
 
 
9f86309
1169f2a
 
59a5ac0
1169f2a
 
59a5ac0
1169f2a
9f6d75b
 
 
 
 
 
 
 
 
 
1169f2a
5ae9c92
 
 
 
 
 
 
 
 
539ba7c
5ae9c92
9f6d75b
 
 
 
 
 
 
 
 
 
 
 
 
 
fa82b2e
9f6d75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a640d
9f6d75b
 
 
 
 
 
 
 
ffa2fb4
9f6d75b
ffa2fb4
9f6d75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2fb5a4
0d6983e
5ae9c92
 
 
c2fb5a4
1addd25
c2fb5a4
1addd25
 
 
 
87085ba
 
1addd25
 
 
 
 
5ae9c92
1addd25
 
 
 
5ae9c92
1addd25
 
5ae9c92
1addd25
 
 
 
5ae9c92
7ca15bd
1addd25
5ae9c92
1addd25
 
5ae9c92
9f6d75b
 
 
 
5ae9c92
 
ced1908
5ae9c92
9f86309
5ae9c92
 
 
 
 
9f6d75b
5ae9c92
 
 
 
1addd25
 
 
5ae9c92
1addd25
 
 
 
b9f4bb1
1addd25
 
5ae9c92
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import os
import numpy as np
import cv2
import PIL.Image as pil_img
import subprocess

subprocess.run(
    'pip install networkx==2.5'
    .split()
)

import gradio as gr

import trimesh
import plotly.graph_objects as go

from models.deco import DECO
from common import constants

if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

description = '''
### DECO: Dense Estimation of 3D Human-Scene Contact in the Wild (ICCV 2023, Oral)
<table>
<th width="20%">
<ul>
<li><strong><a href="https://deco.is.tue.mpg.de/">Homepage</a></strong>
<li><strong><a href="https://github.com/sha2nkt/deco">Code</a></strong>
<li><strong><a href="https://openaccess.thecvf.com/content/ICCV2023/html/Tripathi_DECO_Dense_Estimation_of_3D_Human-Scene_Contact_In_The_Wild_ICCV_2023_paper.html">Paper</a></strong>
</ul>
<br>
<ul>
<li><strong>Colab Notebook</strong> <a href='https://colab.research.google.com/drive/1fTQdI2AHEKlwYG9yIb2wqicIMhAa067_?usp=sharing'><img style="display: inline-block;" src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a></li>
</ul>
<br>
<iframe src="https://ghbtns.com/github-btn.html?user=sha2nkt&repo=deco&type=star&count=true&v=2&size=small" frameborder="0" scrolling="0" width="100" height="20"></iframe>
</th>
</table>

#### Citation
```
@InProceedings{tripathi2023deco,
    author    = {Tripathi, Shashank and Chatterjee, Agniv and Passy, Jean-Claude and Yi, Hongwei and Tzionas, Dimitrios and Black, Michael J.},
    title     = {{DECO}: Dense Estimation of {3D} Human-Scene Contact In The Wild},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2023},
    pages     = {8001-8013}
}
```

<details>
<summary>More</summary>

#### Acknowledgments:
- [ECON](https://huggingface.co/spaces/Yuliang/ECON)

</details>
'''   

DEFAULT_LIGHTING = dict(
    ambient=0.6,
    diffuse=0.5,
    fresnel=0.01,
    specular=0.1,
    roughness=0.001)

DEFAULT_LIGHT_POSITION = dict(x=6, y=0, z=10)

def initiate_model(model_path):
    deco_model = DECO('hrnet', True, device)

    print(f'Loading weights from {model_path}')
    checkpoint = torch.load(model_path)
    deco_model.load_state_dict(checkpoint['deco'], strict=True)

    deco_model.eval()

    return deco_model   

def create_layout(dummy, camera=None):
    if camera is None:
        camera = dict(
            up=dict(x=0, y=1, z=0),
            center=dict(x=0, y=0, z=0),
            eye=dict(x=dummy.x.mean(), y=0, z=3),
            projection=dict(type='perspective'))

    layout = dict(
        scene={
            "xaxis": {
                'showgrid': False,
                'zeroline': False,
                'visible': False,
                "range": [dummy.x.min(), dummy.x.max()]
            },
            "yaxis": {
                'showgrid': False,
                'zeroline': False,
                'visible': False,
                "range": [dummy.y.min(), dummy.y.max()]
            },
            "zaxis": {
                'showgrid': False,
                'zeroline': False,
                'visible': False,
                "range": [dummy.z.min(), dummy.z.max()]
            },
        },
        autosize=False,
        width=750, height=1000,
        scene_camera=camera,
        scene_aspectmode="data",
        clickmode="event+select",
        margin={'l': 0, 't': 0}
    )

    return layout

def create_fig(dummy, camera=None):
    fig = go.Figure(
        data=dummy.mesh_3d(),
        layout=create_layout(dummy, camera))
    return fig

class Dummy:

    def __init__(self, mesh_path):
        """A simple polygonal dummy with colored patches."""
        self._load_trimesh(mesh_path)

    def _load_trimesh(self, path):
        """Load a mesh given a path to a .PLY file."""
        self._trimesh = trimesh.load(path, process=False)
        self._vertices = np.array(self._trimesh.vertices)
        self._faces = np.array(self._trimesh.faces)
        self.colors = self._trimesh.visual.vertex_colors

    @property
    def vertices(self):
        """All the mesh vertices."""
        return self._vertices

    @property
    def faces(self):
        """All the mesh faces."""
        return self._faces

    @property
    def n_vertices(self):
        """Number of vertices in a mesh."""
        return self._vertices.shape[0]

    @property
    def n_faces(self):
        """Number of faces in a mesh."""
        return self._faces.shape[0]

    @property
    def x(self):
        """An array of vertex x coordinates"""
        return self._vertices[:, 0]

    @property
    def y(self):
        """An array of vertex y coordinates"""
        return self._vertices[:, 1]

    @property
    def z(self):
        """An array of vertex z coordinates"""
        return self._vertices[:, 2]

    @property
    def i(self):
        """An array of the first face vertices"""
        return self._faces[:, 0]

    @property
    def j(self):
        """An array of the second face vertices"""
        return self._faces[:, 1]

    @property
    def k(self):
        """An array of the third face vertices"""
        return self._faces[:, 2]

    @property
    def default_selection(self):
        """Default patch selection mask."""
        return dict(vertices=[])

    def mesh_3d(
            self,
            lighting=DEFAULT_LIGHTING,
            light_position=DEFAULT_LIGHT_POSITION
    ):
        """Construct a Mesh3D object give a clickmask for patch coloring."""

        return go.Mesh3d(
            x=self.x, y=self.y, z=self.z,
            i=self.i, j=self.j, k=self.k,
            vertexcolor=self.colors,
            lighting=lighting,
            lightposition=light_position,
            hoverinfo='none')

def main(pil_img, out_dir='demo_out', model_path='checkpoint/deco_best.pth', mesh_colour=[130, 130, 130, 255], annot_colour=[0, 255, 0, 255]):
    deco_model = initiate_model(model_path)
    
    smpl_path = os.path.join(constants.SMPL_MODEL_DIR, 'smpl_neutral_tpose.ply')
    
    img = np.array(pil_img)
    img = cv2.resize(img, (256, 256), cv2.INTER_CUBIC)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = img.transpose(2,0,1)/255.0
    img = img[np.newaxis,:,:,:]
    img = torch.tensor(img, dtype = torch.float32).to(device)

    with torch.no_grad():
        cont, _, _ = deco_model(img)
    cont = cont.detach().cpu().numpy().squeeze()
    cont_smpl = []
    for indx, i in enumerate(cont):
        if i >= 0.5:
            cont_smpl.append(indx)
        
    img = img.detach().cpu().numpy()		
    img = np.transpose(img[0], (1, 2, 0))		
    img = img * 255		
    img = img.astype(np.uint8)
        
    contact_smpl = np.zeros((1, 1, 6890))
    contact_smpl[0][0][cont_smpl] = 1

    body_model_smpl = trimesh.load(smpl_path, process=False)
    for vert in range(body_model_smpl.visual.vertex_colors.shape[0]):
        body_model_smpl.visual.vertex_colors[vert] = mesh_colour
    body_model_smpl.visual.vertex_colors[cont_smpl] = annot_colour
                  
    mesh_out_dir = os.path.join(out_dir, 'Preds')
    os.makedirs(mesh_out_dir, exist_ok=True)          

    print(f'Saving mesh to {mesh_out_dir}')
    body_model_smpl.export(os.path.join(mesh_out_dir, 'pred.obj'))

    dummy = Dummy(os.path.join(mesh_out_dir, 'pred.obj'))
    fig = create_fig(dummy)

    return fig, os.path.join(mesh_out_dir, 'pred.obj') 

with gr.Blocks(title="DECO", css=".gradio-container") as demo:
    gr.Markdown(description)

    gr.HTML("""<h1 style="text-align:center; color:#10768c">DECO Demo</h1>""")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input image", type="pil")
        with gr.Column():
            output_image = gr.Plot(label="Renders")
            output_meshes = gr.File(label="3D meshes")

    gr.HTML("""<br/>""")

    with gr.Row():
        send_btn = gr.Button("Infer")
        send_btn.click(fn=main, inputs=[input_image], outputs=[output_image, output_meshes])

    example_images = gr.Examples([
        ['/home/user/app/example_images/213.jpg'], 
        ['/home/user/app/example_images/pexels-photo-207569.webp'], 
        ['/home/user/app/example_images/pexels-photo-3622517.webp'], 
        ['/home/user/app/example_images/pexels-photo-15732209.jpeg'], 
        ], 
        inputs=[input_image])


demo.launch(debug=True)