File size: 7,768 Bytes
5ae9c92
 
 
 
 
 
 
99a05f0
5ae9c92
 
73849f0
5ae9c92
73849f0
 
 
 
 
5ae9c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6983e
5ae9c92
 
 
 
 
0d6983e
5ae9c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import os
import glob
import numpy as np
import cv2
import PIL.Image as pil_img
import sys

print(os.path.abspath(__file__))
os.system('pip install gradio==3.47.1')
os.system('pip install networkx')

import gradio as gr

import trimesh
import pyrender

from models.deco import DECO
from common import constants

os.environ['PYOPENGL_PLATFORM'] = 'egl'

if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

def initiate_model(model_path):
    deco_model = DECO('hrnet', True, device)

    print(f'Loading weights from {model_path}')
    checkpoint = torch.load(model_path)
    deco_model.load_state_dict(checkpoint['deco'], strict=True)

    deco_model.eval()

    return deco_model

def render_image(scene, img_res, img=None, viewer=False):
    '''
    Render the given pyrender scene and return the image. Can also overlay the mesh on an image.
    '''
    if viewer:
        pyrender.Viewer(scene, use_raymond_lighting=True)
        return 0
    else:
        r = pyrender.OffscreenRenderer(viewport_width=img_res,
                                       viewport_height=img_res,
                                       point_size=1.0)
        color, _ = r.render(scene, flags=pyrender.RenderFlags.RGBA)
        color = color.astype(np.float32) / 255.0

        if img is not None:
            valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis]
            input_img = img.detach().cpu().numpy()
            output_img = (color[:, :, :-1] * valid_mask +
                          (1 - valid_mask) * input_img)
        else:
            output_img = color
        return output_img

def create_scene(mesh, img, focal_length=500, camera_center=250, img_res=500):
    # Setup the scene
    scene = pyrender.Scene(bg_color=[1.0, 1.0, 1.0, 1.0],
                           ambient_light=(0.3, 0.3, 0.3))
    # add mesh for camera
    camera_pose = np.eye(4)
    camera_rotation = np.eye(3, 3)
    camera_translation = np.array([0., 0, 2.5])
    camera_pose[:3, :3] = camera_rotation
    camera_pose[:3, 3] = camera_rotation @ camera_translation
    pyrencamera = pyrender.camera.IntrinsicsCamera(
        fx=focal_length, fy=focal_length,
        cx=camera_center, cy=camera_center)
    scene.add(pyrencamera, pose=camera_pose)
    # create and add light
    light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=1)
    light_pose = np.eye(4)
    for lp in [[1, 1, 1], [-1, 1, 1], [1, -1, 1], [-1, -1, 1]]:
        light_pose[:3, 3] = mesh.vertices.mean(0) + np.array(lp)
        # out_mesh.vertices.mean(0) + np.array(lp)
        scene.add(light, pose=light_pose)
    # add body mesh
    material = pyrender.MetallicRoughnessMaterial(
        metallicFactor=0.0,
        alphaMode='OPAQUE',
        baseColorFactor=(1.0, 1.0, 0.9, 1.0))
    mesh_images = []

    # resize input image to fit the mesh image height
    img_height = img_res
    img_width = int(img_height * img.shape[1] / img.shape[0])
    img = cv2.resize(img, (img_width, img_height))
    mesh_images.append(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    for sideview_angle in [0, 90, 180, 270]:
        out_mesh = mesh.copy()
        rot = trimesh.transformations.rotation_matrix(
            np.radians(sideview_angle), [0, 1, 0])
        out_mesh.apply_transform(rot)
        out_mesh = pyrender.Mesh.from_trimesh(
            out_mesh,
            material=material)
        mesh_pose = np.eye(4)
        scene.add(out_mesh, pose=mesh_pose, name='mesh')
        output_img = render_image(scene, img_res)
        output_img = pil_img.fromarray((output_img * 255).astype(np.uint8))
        output_img = np.asarray(output_img)[:, :, :3]
        mesh_images.append(output_img)
        # delete the previous mesh
        prev_mesh = scene.get_nodes(name='mesh').pop()
        scene.remove_node(prev_mesh)

    # show upside down view
    for topview_angle in [90, 270]:
        out_mesh = mesh.copy()
        rot = trimesh.transformations.rotation_matrix(
            np.radians(topview_angle), [1, 0, 0])
        out_mesh.apply_transform(rot)
        out_mesh = pyrender.Mesh.from_trimesh(
            out_mesh,
            material=material)
        mesh_pose = np.eye(4)
        scene.add(out_mesh, pose=mesh_pose, name='mesh')
        output_img = render_image(scene, img_res)
        output_img = pil_img.fromarray((output_img * 255).astype(np.uint8))
        output_img = np.asarray(output_img)[:, :, :3]
        mesh_images.append(output_img)
        # delete the previous mesh
        prev_mesh = scene.get_nodes(name='mesh').pop()
        scene.remove_node(prev_mesh)

    # stack images
    IMG = np.hstack(mesh_images)
    IMG = pil_img.fromarray(IMG)
    IMG.thumbnail((3000, 3000))
    return IMG    

def main(img_src, out_dir, model_path='checkpoint/deco_best.pth', mesh_colour=[130, 130, 130, 255], annot_colour=[0, 255, 0, 255]):
    if os.path.isdir(img_src):
        images = glob.iglob(img_src + '/*', recursive=True)
    else:
        images = [img_src]

    deco_model = initiate_model(model_path)
    
    smpl_path = os.path.join(constants.SMPL_MODEL_DIR, 'smpl_neutral_tpose.ply')
    
    for img_name in images:
        img = cv2.imread(img_name)
        img = cv2.resize(img, (256, 256), cv2.INTER_CUBIC)
        img = img.transpose(2,0,1)/255.0
        img = img[np.newaxis,:,:,:]
        img = torch.tensor(img, dtype = torch.float32).to(device)

        cont, _, _ = deco_model(img)
        cont = cont.detach().cpu().numpy().squeeze()
        cont_smpl = []
        for indx, i in enumerate(cont):
            if i >= 0.5:
                cont_smpl.append(indx)
        
        img = img.detach().cpu().numpy()		
        img = np.transpose(img[0], (1, 2, 0))		
        img = img * 255		
        img = img.astype(np.uint8)
        
        contact_smpl = np.zeros((1, 1, 6890))
        contact_smpl[0][0][cont_smpl] = 1

        body_model_smpl = trimesh.load(smpl_path, process=False)
        for vert in range(body_model_smpl.visual.vertex_colors.shape[0]):
            body_model_smpl.visual.vertex_colors[vert] = mesh_colour
        body_model_smpl.visual.vertex_colors[cont_smpl] = annot_colour

        rend = create_scene(body_model_smpl, img)
        os.makedirs(os.path.join(out_dir, 'Renders'), exist_ok=True) 
        rend.save(os.path.join(out_dir, 'Renders', os.path.basename(img_name).split('.')[0] + '.png'))
                  
        mesh_out_dir = os.path.join(out_dir, 'Preds', os.path.basename(img_name).split('.')[0])
        os.makedirs(mesh_out_dir, exist_ok=True)          

        print(f'Saving mesh to {mesh_out_dir}')
        body_model_smpl.export(os.path.join(mesh_out_dir, 'pred.obj'))

    return out_dir   

with gr.Blocks(title="DECO", css=".gradio-container") as demo:

    gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">DECO</div>""")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input image", type="pil")
        with gr.Column():
            output_image = gr.Image(label="Renders", type="pil")
            output_meshes = gr.File(label="3D meshes")

    gr.HTML("""<br/>""")

    # with gr.Row():
    #     threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
    #     send_btn = gr.Button("Infer")
    #     send_btn.click(fn=main, inputs=[input_image, threshold], outputs=[output_image, output_meshes])

    # example_images = gr.Examples([
    #     ['/home/user/app/assets/test1.png'], 
    #     ['/home/user/app/assets/test2.jpg'], 
    #     ['/home/user/app/assets/test3.jpg'], 
    #     ['/home/user/app/assets/test4.jpg'], 
    #     ['/home/user/app/assets/test5.jpg'], 
    #     ], 
    #     inputs=[input_image, 0.6])


#demo.queue()
demo.launch(debug=True)