File size: 14,992 Bytes
99a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
This file contains functions that are used to perform data augmentation.
"""
import cv2
import torch
import json
from skimage.transform import rotate, resize
import numpy as np
import jpeg4py as jpeg
from trimesh.visual import color

# from ..core import constants
# from .vibe_image_utils import gen_trans_from_patch_cv
from .kp_utils import map_smpl_to_common, get_smpl_joint_names

def get_transform(center, scale, res, rot=0):
    """Generate transformation matrix."""
    h = 200 * scale
    t = np.zeros((3, 3))
    t[0, 0] = float(res[1]) / h
    t[1, 1] = float(res[0]) / h
    t[0, 2] = res[1] * (-float(center[0]) / h + .5)
    t[1, 2] = res[0] * (-float(center[1]) / h + .5)
    t[2, 2] = 1
    if not rot == 0:
        rot = -rot  # To match direction of rotation from cropping
        rot_mat = np.zeros((3, 3))
        rot_rad = rot * np.pi / 180
        sn, cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0, :2] = [cs, -sn]
        rot_mat[1, :2] = [sn, cs]
        rot_mat[2, 2] = 1
        # Need to rotate around center
        t_mat = np.eye(3)
        t_mat[0, 2] = -res[1] / 2
        t_mat[1, 2] = -res[0] / 2
        t_inv = t_mat.copy()
        t_inv[:2, 2] *= -1
        t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
    return t


def transform(pt, center, scale, res, invert=0, rot=0):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2].astype(int) + 1


def crop(img, center, scale, res, rot=0):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
    # Bottom right point
    br = np.array(transform([res[0] + 1,
                             res[1] + 1], center, scale, res, invert=1)) - 1

    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
    if not rot == 0:
        ul -= pad
        br += pad

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(new_shape)

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])
    new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
                                                    old_x[0]:old_x[1]]

    if not rot == 0:
        # Remove padding

        new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot)
        new_img = new_img[pad:-pad, pad:-pad]

    # resize image
    new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res)
    return new_img


def crop_cv2(img, center, scale, res, rot=0):
    c_x, c_y = center
    c_x, c_y = int(round(c_x)), int(round(c_y))
    patch_width, patch_height = int(round(res[0])), int(round(res[1]))
    bb_width = bb_height = int(round(scale * 200.))

    trans = gen_trans_from_patch_cv(
        c_x, c_y, bb_width, bb_height,
        patch_width, patch_height,
        scale=1.0, rot=rot, inv=False,
    )

    crop_img = cv2.warpAffine(
        img, trans, (int(patch_width), int(patch_height)),
        flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT
    )

    return crop_img


def get_random_crop_coords(height, width, crop_height, crop_width, h_start, w_start):
    y1 = int((height - crop_height) * h_start)
    y2 = y1 + crop_height
    x1 = int((width - crop_width) * w_start)
    x2 = x1 + crop_width
    return x1, y1, x2, y2


def random_crop(center, scale, crop_scale_factor, axis='all'):
    '''
    center: bbox center [x,y]
    scale: bbox height / 200
    crop_scale_factor: amount of cropping to be applied
    axis: axis which cropping will be applied
        "x": center the y axis and get random crops in x
        "y": center the x axis and get random crops in y
        "all": randomly crop from all locations
    '''
    orig_size = int(scale * 200.)
    ul = (center - (orig_size / 2.)).astype(int)

    crop_size = int(orig_size * crop_scale_factor)

    if axis == 'all':
        h_start = np.random.rand()
        w_start = np.random.rand()
    elif axis == 'x':
        h_start = np.random.rand()
        w_start = 0.5
    elif axis == 'y':
        h_start = 0.5
        w_start = np.random.rand()
    else:
        raise ValueError(f'axis {axis} is undefined!')

    x1, y1, x2, y2 = get_random_crop_coords(
        height=orig_size,
        width=orig_size,
        crop_height=crop_size,
        crop_width=crop_size,
        h_start=h_start,
        w_start=w_start,
    )
    scale = (y2 - y1) / 200.
    center = ul + np.array([(y1 + y2) / 2, (x1 + x2) / 2])
    return center, scale


def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True):
    """'Undo' the image cropping/resizing.
    This function is used when evaluating mask/part segmentation.
    """
    res = img.shape[:2]
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1)) - 1
    # Bottom right point
    br = np.array(transform([res[0] + 1, res[1] + 1], center, scale, res, invert=1)) - 1
    # size of cropped image
    crop_shape = [br[1] - ul[1], br[0] - ul[0]]

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(orig_shape, dtype=np.uint8)
    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(orig_shape[1], br[0])
    old_y = max(0, ul[1]), min(orig_shape[0], br[1])
    img = resize(img, crop_shape) #, interp='nearest') # scipy.misc.imresize(img, crop_shape, interp='nearest')
    new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
    return new_img


def rot_aa(aa, rot):
    """Rotate axis angle parameters."""
    # pose parameters
    R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
                  [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
                  [0, 0, 1]])
    # find the rotation of the body in camera frame
    per_rdg, _ = cv2.Rodrigues(aa)
    # apply the global rotation to the global orientation
    resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
    aa = (resrot.T)[0]
    return aa


def flip_img(img):
    """Flip rgb images or masks.
    channels come last, e.g. (256,256,3).
    """
    img = np.fliplr(img)
    return img


def flip_kp(kp):
    """Flip keypoints."""
    if len(kp) == 24:
        flipped_parts = constants.J24_FLIP_PERM
    elif len(kp) == 49:
        flipped_parts = constants.J49_FLIP_PERM
    kp = kp[flipped_parts]
    kp[:, 0] = - kp[:, 0]
    return kp


def flip_pose(pose):
    """Flip pose.
    The flipping is based on SMPL parameters.
    """
    flipped_parts = constants.SMPL_POSE_FLIP_PERM
    pose = pose[flipped_parts]
    # we also negate the second and the third dimension of the axis-angle
    pose[1::3] = -pose[1::3]
    pose[2::3] = -pose[2::3]
    return pose


def denormalize_images(images):
    images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1, 3, 1, 1)
    images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1, 3, 1, 1)
    return images


def read_img(img_fn):
    #  return pil_img.fromarray(
                #  cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB))
    #  with open(img_fn, 'rb') as f:
        #  img = pil_img.open(f).convert('RGB')
    #  return img
    if img_fn.endswith('jpeg') or img_fn.endswith('jpg'):
        try:
            with open(img_fn, 'rb') as f:
                img = np.array(jpeg.JPEG(f).decode())
        except jpeg.JPEGRuntimeError:
            # logger.warning('{} produced a JPEGRuntimeError', img_fn)
            img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB)
    else:
    #  elif img_fn.endswith('png') or img_fn.endswith('JPG') or img_fn.endswith(''):
        img = cv2.cvtColor(cv2.imread(img_fn), cv2.COLOR_BGR2RGB)
    return img.astype(np.float32)


def generate_heatmaps_2d(joints, joints_vis, num_joints=24, heatmap_size=56, image_size=224, sigma=1.75):
    '''
    :param joints:  [num_joints, 3]
    :param joints_vis: [num_joints, 3]
    :return: target, target_weight(1: visible, 0: invisible)
    '''
    target_weight = np.ones((num_joints, 1), dtype=np.float32)
    target_weight[:, 0] = joints_vis[:, 0]

    target = np.zeros((num_joints, heatmap_size, heatmap_size), dtype=np.float32)

    tmp_size = sigma * 3

    # denormalize joint into heatmap coordinates
    joints = (joints + 1.) * (image_size / 2.)

    for joint_id in range(num_joints):
        feat_stride = image_size / heatmap_size
        mu_x = int(joints[joint_id][0] / feat_stride + 0.5)
        mu_y = int(joints[joint_id][1] / feat_stride + 0.5)
        # Check that any part of the gaussian is in-bounds
        ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
        br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
        if ul[0] >= heatmap_size or ul[1] >= heatmap_size \
                or br[0] < 0 or br[1] < 0:
            # If not, just return the image as is
            target_weight[joint_id] = 0
            continue

        # # Generate gaussian
        size = 2 * tmp_size + 1
        x = np.arange(0, size, 1, np.float32)
        y = x[:, np.newaxis]
        x0 = y0 = size // 2
        # The gaussian is not normalized, we want the center value to equal 1
        g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))

        # Usable gaussian range
        g_x = max(0, -ul[0]), min(br[0], heatmap_size) - ul[0]
        g_y = max(0, -ul[1]), min(br[1], heatmap_size) - ul[1]
        # Image range
        img_x = max(0, ul[0]), min(br[0], heatmap_size)
        img_y = max(0, ul[1]), min(br[1], heatmap_size)

        v = target_weight[joint_id]
        if v > 0.5:
            target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
                g[g_y[0]:g_y[1], g_x[0]:g_x[1]]

    return target, target_weight


def generate_part_labels(vertices, faces, cam_t, neural_renderer, body_part_texture, K, R, part_bins):
    batch_size = vertices.shape[0]

    body_parts, depth, mask = neural_renderer(
        vertices,
        faces.expand(batch_size, -1, -1),
        textures=body_part_texture.expand(batch_size, -1, -1, -1, -1, -1),
        K=K.expand(batch_size, -1, -1),
        R=R.expand(batch_size, -1, -1),
        t=cam_t.unsqueeze(1),
    )

    render_rgb = body_parts.clone()

    body_parts = body_parts.permute(0, 2, 3, 1)
    body_parts *= 255. # multiply it with 255 to make labels distant
    body_parts, _ = body_parts.max(-1) # reduce to single channel

    body_parts = torch.bucketize(body_parts.detach(), part_bins, right=True) # np.digitize(body_parts, bins, right=True)

    # add 1 to make background label 0
    body_parts = body_parts.long() + 1
    body_parts = body_parts * mask.detach()

    return body_parts.long(), render_rgb


def generate_heatmaps_2d_batch(joints, num_joints=24, heatmap_size=56, image_size=224, sigma=1.75):
    batch_size = joints.shape[0]

    joints = joints.detach().cpu().numpy()
    joints_vis = np.ones_like(joints)

    heatmaps = []
    heatmaps_vis = []
    for i in range(batch_size):
        hm, hm_vis = generate_heatmaps_2d(joints[i], joints_vis[i], num_joints, heatmap_size, image_size, sigma)
        heatmaps.append(hm)
        heatmaps_vis.append(hm_vis)

    return torch.from_numpy(np.stack(heatmaps)).float().to('cuda'), \
           torch.from_numpy(np.stack(heatmaps_vis)).float().to('cuda')      


def get_body_part_texture(faces, model_type='smpl', non_parametric=False):
    if model_type == 'smpl':
        n_vertices = 6890
        segmentation_path = 'data/smpl_vert_segmentation.json'
    if model_type == 'smplx':
        n_vertices = 10475
        segmentation_path = 'data/smplx_vert_segmentation.json'

    with open(segmentation_path, 'rb') as f:
        part_segmentation = json.load(f)

    # map all vertex ids to the joint ids
    joint_names = get_smpl_joint_names()
    smplx_extra_joint_names = ['leftEye', 'eyeballs', 'rightEye']
    body_vert_idx = np.zeros((n_vertices), dtype=np.int32) - 1  # -1 for missing label
    for i, (k, v) in enumerate(part_segmentation.items()):
        if k in smplx_extra_joint_names and model_type == 'smplx':
            k = 'head'  # map all extra smplx face joints to head
        body_joint_idx = joint_names.index(k)
        body_vert_idx[v] = body_joint_idx

    # pare implementation
    # import joblib
    # part_segmentation = joblib.load('data/smpl_partSegmentation_mapping.pkl')
    # body_vert_idx = part_segmentation['smpl_index']

    n_parts = 24.

    if non_parametric:
        # reduce the number of body_parts to 14
        # by mapping some joints to others
        n_parts = 14.
        joint_mapping = map_smpl_to_common()

        for jm in joint_mapping:
            for j in jm[0]:
                body_vert_idx[body_vert_idx==j] = jm[1]

    vertex_colors = np.ones((n_vertices, 4))
    vertex_colors[:, :3] = body_vert_idx[..., None]

    vertex_colors = color.to_rgba(vertex_colors)
    vertex_colors = vertex_colors[:, :3]/255.

    face_colors = vertex_colors[faces].min(axis=1)
    texture = np.zeros((1, faces.shape[0], 1, 1, 3), dtype=np.float32)
    # texture[0, :, 0, 0, :] = face_colors[:, :3] / n_parts
    texture[0, :, 0, 0, :] = face_colors[:, :3]

    vertex_colors = torch.from_numpy(vertex_colors).float()
    texture = torch.from_numpy(texture).float()
    return vertex_colors, texture


def get_default_camera(focal_length, img_h, img_w, is_cam_batch=False):
    if not is_cam_batch:
        K = torch.eye(3)
        K[0, 0] = focal_length
        K[1, 1] = focal_length
        K[2, 2] = 1
        K[0, 2] = img_w / 2.
        K[1, 2] = img_h / 2.
        K = K[None, :, :]
        R = torch.eye(3)[None, :, :]
    else:
        bs = focal_length.shape[0]
        K = torch.eye(3)[None, :, :].repeat(bs, 1, 1)
        K[:, 0, 0] = focal_length[:, 0]
        K[:, 1, 1] = focal_length[:, 1]
        K[:, 2, 2] = 1
        K[:, 0, 2] = img_w / 2.
        K[:, 1, 2] = img_h / 2.
        R = torch.eye(3)[None, :, :].repeat(bs, 1, 1)
    return K, R


def read_exif_data(img_fname):
    import PIL.Image
    import PIL.ExifTags

    img = PIL.Image.open(img_fname)
    exif_data = img._getexif()

    if exif_data == None:
        return None

    exif = {
        PIL.ExifTags.TAGS[k]: v
        for k, v in exif_data.items()
        if k in PIL.ExifTags.TAGS
    }
    return exif