Spaces:
Sleeping
Sleeping
File size: 2,638 Bytes
99a05f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import torch
from torch.utils.data import DataLoader
from loguru import logger
from train.trainer_step import TrainStepper
from train.base_trainer import evaluator
from data.base_dataset import BaseDataset
from models.deco import DECO
from utils.config import parse_args, run_grid_search_experiments
def test(hparams):
deco_model = DECO(hparams.TRAINING.ENCODER, hparams.TRAINING.CONTEXT, device)
pytorch_total_params = sum(p.numel() for p in deco_model.parameters() if p.requires_grad)
print('Total number of trainable parameters: ', pytorch_total_params)
solver = TrainStepper(deco_model, hparams.TRAINING.CONTEXT, hparams.OPTIMIZER.LR, hparams.TRAINING.LOSS_WEIGHTS, hparams.TRAINING.PAL_LOSS_WEIGHTS, device)
logger.info(f'Loading weights from {hparams.TRAINING.BEST_MODEL_PATH}')
_, _ = solver.load(hparams.TRAINING.BEST_MODEL_PATH)
# Run testing
for test_loader in val_loaders:
dataset_name = test_loader.dataset.dataset
test_dict, total_time = evaluator(test_loader, solver, hparams, 0, dataset_name, return_dict=True)
print('Test Contact Precision: ', test_dict['cont_precision'])
print('Test Contact Recall: ', test_dict['cont_recall'])
print('Test Contact F1 Score: ', test_dict['cont_f1'])
print('Test Contact FP Geo. Error: ', test_dict['fp_geo_err'])
print('Test Contact FN Geo. Error: ', test_dict['fn_geo_err'])
if hparams.TRAINING.CONTEXT:
print('Test Contact Semantic Segmentation IoU: ', test_dict['sem_iou'])
print('Test Contact Part Segmentation IoU: ', test_dict['part_iou'])
print('\nTime taken per image for evaluation: ', total_time)
print('-'*50)
if __name__ == '__main__':
args = parse_args()
hparams = run_grid_search_experiments(
args,
script='tester.py',
change_wt_name=False
)
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
val_datasets = []
for ds in hparams.VALIDATION.DATASETS:
if ds in ['rich', 'prox']:
val_datasets.append(BaseDataset(ds, 'val', model_type='smplx', normalize=hparams.DATASET.NORMALIZE_IMAGES))
elif ds in ['damon']:
val_datasets.append(BaseDataset(ds, 'val', model_type='smpl', normalize=hparams.DATASET.NORMALIZE_IMAGES))
else:
raise ValueError('Dataset not supported')
val_loaders = [DataLoader(val_dataset, batch_size=hparams.DATASET.BATCH_SIZE, shuffle=False, num_workers=hparams.DATASET.NUM_WORKERS) for val_dataset in val_datasets]
test(hparams) |