File size: 1,149 Bytes
93b922c
 
 
 
9cb9227
93b922c
 
 
 
 
 
 
 
 
8d6bd5c
 
edcd6eb
8d6bd5c
 
 
edcd6eb
 
8d6bd5c
 
9cb9227
8952f30
9cb9227
233fe2e
 
 
48777c4
983ea9a
8952f30
233fe2e
8d6bd5c
edcd6eb
93b922c
8d6bd5c
 
 
0c83fed
93b922c
8d6bd5c
 
 
 
7fe40d1
8d6bd5c
 
 
 
 
 
 
93b922c
8d6bd5c
983ea9a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from smolagents import (
    HfApiModel,
    CodeAgent,
    load_tool,
    Tool,
    InferenceClientModel,
    ToolCallingAgent,
    FinalAnswerTool,
    DuckDuckGoSearchTool,
    VisitWebpageTool,
    GoogleSearchTool,
    PythonInterpreterTool,
)
import os
from huggingface_hub import login
from dotenv import load_dotenv
from langchain.agents import load_tools

load_dotenv()
login(os.environ["HF_API_KEY"])
from sample_questions import QUESTIONS


# Tools

# wikipedia = Tool.from_langchain(load_tools(["wikipedia"])[0])

tools = [
    DuckDuckGoSearchTool(),
    VisitWebpageTool(),
    # PythonInterpreterTool(),
    # FinalAnswerTool(),
    # wikipedia,
]

# Model
# LLM Model
model = HfApiModel(
    "Qwen/Qwen2.5-72B-Instruct",
    provider="together",
    # max_tokens=40096,
    temperature=0.1,
    # token=get_huggingface_token(),
)

# Tool Calling Agent
llm = HfApiModel("Qwen/Qwen2.5-72B-Instruct", temperature=0)

toolCallingAgent = ToolCallingAgent(
    model=model,
    tools=tools,
    max_steps=20,
)

toolCallingAgent.logger.console.width = 66

# question = QUESTIONS[0]
# answer = toolCallingAgent.run(question)
# print(answer)