File size: 8,786 Bytes
f7d305f
b5276b3
 
 
 
f7d305f
b5276b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d305f
b5276b3
 
 
 
 
 
f7d305f
b5276b3
 
f7d305f
b5276b3
 
 
 
 
 
 
 
 
 
 
 
f7d305f
b5276b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d305f
b5276b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d305f
b5276b3
 
 
 
 
 
 
 
 
 
f7d305f
b5276b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332b30f
b5276b3
 
332b30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d305f
b5276b3
 
332b30f
b5276b3
 
332b30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5276b3
 
 
332b30f
b5276b3
 
 
 
f7d305f
 
b5276b3
 
f7d305f
b5276b3
f7d305f
b5276b3
 
f7d305f
 
 
332b30f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import torch
import torch.nn as nn
import sentencepiece as spm
import math

# Define Transformer components (unchanged)
class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads
        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, d_model)
        self.W_v = nn.Linear(d_model, d_model)
        self.W_o = nn.Linear(d_model, d_model)
        
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
        attn_probs = torch.softmax(attn_scores, dim=-1)
        output = torch.matmul(attn_probs, V)
        return output
        
    def split_heads(self, x):
        batch_size, seq_length, d_model = x.size()
        return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
        
    def combine_heads(self, x):
        batch_size, _, seq_length, d_k = x.size()
        return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
        
    def forward(self, Q, K, V, mask=None):
        Q = self.split_heads(self.W_q(Q))
        K = self.split_heads(self.W_k(K))
        V = self.split_heads(self.W_v(V))
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
        output = self.W_o(self.combine_heads(attn_output))
        return output

class PositionWiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super(PositionWiseFeedForward, self).__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.relu = nn.ReLU()

    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_seq_length):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe.unsqueeze(0))
        
    def forward(self, x):
        return x + self.pe[:, :x.size(1)]

class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, mask):
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm2(x + self.dropout(ff_output))
        return x

class DecoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.cross_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, enc_output, src_mask, tgt_mask):
        attn_output = self.self_attn(x, x, x, tgt_mask)
        x = self.norm1(x + self.dropout(attn_output))
        attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
        x = self.norm2(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm3(x + self.dropout(ff_output))
        return x

class Transformer(nn.Module):
    def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
        super(Transformer, self).__init__()
        self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
        self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
        self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
        self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.fc = nn.Linear(d_model, tgt_vocab_size)
        self.dropout = nn.Dropout(dropout)

    def generate_mask(self, src, tgt):
        src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
        tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
        seq_length = tgt.size(1)
        nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
        tgt_mask = tgt_mask & nopeak_mask
        return src_mask, tgt_mask

    def forward(self, src, tgt):
        src_mask, tgt_mask = self.generate_mask(src, tgt)
        src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
        tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
        enc_output = src_embedded
        for enc_layer in self.encoder_layers:
            enc_output = enc_layer(enc_output, src_mask)
        dec_output = tgt_embedded
        for dec_layer in self.decoder_layers:
            dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
        output = self.fc(dec_output)
        return output

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load tokenizers
try:
    sp_pseudo = spm.SentencePieceProcessor(model_file="pseudo.model")
    sp_code = spm.SentencePieceProcessor(model_file="code.model")
    print("Tokenizers loaded successfully.")
except Exception as e:
    print(f"Error loading tokenizers: {e}")
    raise

# Load the full saved model
model_path = "transformer_cpp_to_pseudo_30.pth"
try:
    model = torch.load(model_path, map_location=device, weights_only=False)
    model.eval()
    model = model.to(device)
    print("Model loaded successfully.")
except Exception as e:
    print(f"Error loading model: {e}")
    raise

def generate_pseudocode(cpp_code, max_len):
    """Generate pseudocode from C++ code with streaming output."""
    print(f"Input C++ code: {cpp_code}")
    model.eval()
    
    try:
        src_tokens = sp_code.encode_as_ids(cpp_code)
        print(f"Source tokens: {src_tokens}")
        src = torch.tensor([src_tokens], dtype=torch.long, device=device)
        
        tgt = torch.tensor([[2]], dtype=torch.long, device=device)  # <bos_id>=2
        generated_tokens = [2]  # Start with <START>
        response = ""
        
        with torch.no_grad():
            for i in range(max_len):
                output = model(src, tgt)
                next_token = output[:, -1, :].argmax(-1).item()
                generated_tokens.append(next_token)
                tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
                response = sp_pseudo.decode_ids(generated_tokens)
                print(f"Step {i}: Next token = {next_token}, Generated so far: {response}")
                yield response  # Yield partial output
                if next_token == 3:  # <END>=3
                    print("EOS token detected, stopping generation.")
                    break
        yield response  # Final output
    except Exception as e:
        print(f"Error in generation: {e}")
        yield f"Error: {e}"

def respond(message, history, max_tokens):
    """Wrapper for Gradio interface."""
    print(f"Received message: {message}")
    for response in generate_pseudocode(message, max_tokens):
        yield response

# Gradio interface
demo = gr.ChatInterface(
    respond,
    chatbot=gr.Chatbot(label="C++ to Pseudocode Generator"),
    textbox=gr.Textbox(placeholder="Enter C++ code (e.g., 'int x = 5; for(int i=0; i<x; i++) cout << i;')", label="C++ Code"),
    additional_inputs=[
        gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max tokens"),
    ],
    title="C++ to Pseudocode Transformer",
    description="Convert C++ code to pseudocode using a custom transformer trained on the SPoC dataset.",
)

if __name__ == "__main__":
    demo.launch(debug=True)  # Enable debug mode for more output