abdullah63 commited on
Commit
b5276b3
·
verified ·
1 Parent(s): b32e71a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +168 -46
app.py CHANGED
@@ -1,64 +1,186 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  demo = gr.ChatInterface(
47
  respond,
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ import torch.nn as nn
4
+ import sentencepiece as spm
5
+ import math
6
 
7
+ # Define Transformer components (unchanged)
8
+ class MultiHeadAttention(nn.Module):
9
+ def __init__(self, d_model, num_heads):
10
+ super(MultiHeadAttention, self).__init__()
11
+ assert d_model % num_heads == 0
12
+ self.d_model = d_model
13
+ self.num_heads = num_heads
14
+ self.d_k = d_model // num_heads
15
+ self.W_q = nn.Linear(d_model, d_model)
16
+ self.W_k = nn.Linear(d_model, d_model)
17
+ self.W_v = nn.Linear(d_model, d_model)
18
+ self.W_o = nn.Linear(d_model, d_model)
19
+
20
+ def scaled_dot_product_attention(self, Q, K, V, mask=None):
21
+ attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
22
+ if mask is not None:
23
+ attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
24
+ attn_probs = torch.softmax(attn_scores, dim=-1)
25
+ output = torch.matmul(attn_probs, V)
26
+ return output
27
+
28
+ def split_heads(self, x):
29
+ batch_size, seq_length, d_model = x.size()
30
+ return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
31
+
32
+ def combine_heads(self, x):
33
+ batch_size, _, seq_length, d_k = x.size()
34
+ return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
35
+
36
+ def forward(self, Q, K, V, mask=None):
37
+ Q = self.split_heads(self.W_q(Q))
38
+ K = self.split_heads(self.W_k(K))
39
+ V = self.split_heads(self.W_v(V))
40
+ attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
41
+ output = self.W_o(self.combine_heads(attn_output))
42
+ return output
43
 
44
+ class PositionWiseFeedForward(nn.Module):
45
+ def __init__(self, d_model, d_ff):
46
+ super(PositionWiseFeedForward, self).__init__()
47
+ self.fc1 = nn.Linear(d_model, d_ff)
48
+ self.fc2 = nn.Linear(d_ff, d_model)
49
+ self.relu = nn.ReLU()
50
 
51
+ def forward(self, x):
52
+ return self.fc2(self.relu(self.fc1(x)))
 
 
 
 
 
 
 
53
 
54
+ class PositionalEncoding(nn.Module):
55
+ def __init__(self, d_model, max_seq_length):
56
+ super(PositionalEncoding, self).__init__()
57
+ pe = torch.zeros(max_seq_length, d_model)
58
+ position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
59
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
60
+ pe[:, 0::2] = torch.sin(position * div_term)
61
+ pe[:, 1::2] = torch.cos(position * div_term)
62
+ self.register_buffer('pe', pe.unsqueeze(0))
63
+
64
+ def forward(self, x):
65
+ return x + self.pe[:, :x.size(1)]
66
 
67
+ class EncoderLayer(nn.Module):
68
+ def __init__(self, d_model, num_heads, d_ff, dropout):
69
+ super(EncoderLayer, self).__init__()
70
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
71
+ self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
72
+ self.norm1 = nn.LayerNorm(d_model)
73
+ self.norm2 = nn.LayerNorm(d_model)
74
+ self.dropout = nn.Dropout(dropout)
75
+
76
+ def forward(self, x, mask):
77
+ attn_output = self.self_attn(x, x, x, mask)
78
+ x = self.norm1(x + self.dropout(attn_output))
79
+ ff_output = self.feed_forward(x)
80
+ x = self.norm2(x + self.dropout(ff_output))
81
+ return x
82
 
83
+ class DecoderLayer(nn.Module):
84
+ def __init__(self, d_model, num_heads, d_ff, dropout):
85
+ super(DecoderLayer, self).__init__()
86
+ self.self_attn = MultiHeadAttention(d_model, num_heads)
87
+ self.cross_attn = MultiHeadAttention(d_model, num_heads)
88
+ self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
89
+ self.norm1 = nn.LayerNorm(d_model)
90
+ self.norm2 = nn.LayerNorm(d_model)
91
+ self.norm3 = nn.LayerNorm(d_model)
92
+ self.dropout = nn.Dropout(dropout)
93
+
94
+ def forward(self, x, enc_output, src_mask, tgt_mask):
95
+ attn_output = self.self_attn(x, x, x, tgt_mask)
96
+ x = self.norm1(x + self.dropout(attn_output))
97
+ attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
98
+ x = self.norm2(x + self.dropout(attn_output))
99
+ ff_output = self.feed_forward(x)
100
+ x = self.norm3(x + self.dropout(ff_output))
101
+ return x
102
 
103
+ class Transformer(nn.Module):
104
+ def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
105
+ super(Transformer, self).__init__()
106
+ self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
107
+ self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
108
+ self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
109
+ self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
110
+ self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
111
+ self.fc = nn.Linear(d_model, tgt_vocab_size)
112
+ self.dropout = nn.Dropout(dropout)
113
 
114
+ def generate_mask(self, src, tgt):
115
+ src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
116
+ tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
117
+ seq_length = tgt.size(1)
118
+ nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
119
+ tgt_mask = tgt_mask & nopeak_mask
120
+ return src_mask, tgt_mask
121
+
122
+ def forward(self, src, tgt):
123
+ src_mask, tgt_mask = self.generate_mask(src, tgt)
124
+ src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
125
+ tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))
126
+ enc_output = src_embedded
127
+ for enc_layer in self.encoder_layers:
128
+ enc_output = enc_layer(enc_output, src_mask)
129
+ dec_output = tgt_embedded
130
+ for dec_layer in self.decoder_layers:
131
+ dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
132
+ output = self.fc(dec_output)
133
+ return output
134
+
135
+ # Set device
136
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
137
+
138
+ # Load tokenizers
139
+ sp_pseudo = spm.SentencePieceProcessor(model_file="pseudo.model") # For decoding pseudocode (target)
140
+ sp_code = spm.SentencePieceProcessor(model_file="code.model") # For encoding C++ (source)
141
 
142
+ # Load the full saved model (architecture + weights)
143
+ model_path = "transformer_cpp_to_pseudo.pth"
144
+ model = torch.load(model_path, map_location=device, weights_only=False)
145
+ model.eval()
146
+ model = model.to(device)
147
 
148
+ def generate_pseudocode(cpp_code, max_len):
149
+ """Generate pseudocode from C++ code with streaming output."""
150
+ model.eval()
151
+ src = torch.tensor([sp_code.encode_as_ids(cpp_code)], dtype=torch.long, device=device) # Tokenize C++ code
152
+ tgt = torch.tensor([[2]], dtype=torch.long, device=device) # <bos_id>=2
153
+
154
+ generated_tokens = [2] # Start with <START>
155
+ response = ""
156
+ with torch.no_grad():
157
+ for _ in range(max_len):
158
+ output = model(src, tgt)
159
+ next_token = output[:, -1, :].argmax(-1).item()
160
+ generated_tokens.append(next_token)
161
+ tgt = torch.cat([tgt, torch.tensor([[next_token]], device=device)], dim=1)
162
+ response = sp_pseudo.decode_ids(generated_tokens) # Decode to pseudocode
163
+ yield response # Yield partial output
164
+ if next_token == 3: # <END>=3 (adjust if your EOS ID differs)
165
+ break
166
+ yield response # Final output
167
+
168
+ def respond(message, history, max_tokens):
169
+ """Wrapper for Gradio interface."""
170
+ for response in generate_pseudocode(message, max_tokens):
171
+ yield response
172
+
173
+ # Gradio interface
174
  demo = gr.ChatInterface(
175
  respond,
176
+ chatbot=gr.Chatbot(label="C++ to Pseudocode Generator"),
177
+ textbox=gr.Textbox(placeholder="Enter C++ code (e.g., 'int x = 5; for(int i=0; i<x; i++) cout << i;')", label="C++ Code"),
178
  additional_inputs=[
179
+ gr.Slider(minimum=10, maximum=1000, value=50, step=1, label="Max tokens"),
 
 
 
 
 
 
 
 
 
180
  ],
181
+ title="C++ to Pseudocode Transformer",
182
+ description="Convert C++ code to pseudocode using a custom transformer trained on the SPoC dataset.",
183
  )
184
 
 
185
  if __name__ == "__main__":
186
+ demo.launch()