Spaces:
Sleeping
Sleeping
File size: 6,469 Bytes
7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db 7bdf2e1 a86a6db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import sys
import torch
import pandas as pd
import streamlit as st
from datetime import datetime
from transformers import (
T5ForConditionalGeneration,
T5Tokenizer,
Trainer,
TrainingArguments,
DataCollatorForSeq2Seq
)
from torch.utils.data import Dataset
import random
# Ensure reproducibility
torch.manual_seed(42)
random.seed(42)
# Environment setup
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
class TravelDataset(Dataset):
def __init__(self, data, tokenizer, max_length=512):
self.tokenizer = tokenizer
self.data = data
self.max_length = max_length
print(f"Dataset loaded with {len(data)} samples")
print("Columns:", list(data.columns))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
row = self.data.iloc[idx]
# Input: query
input_text = row['query']
# Target: reference_information
target_text = row['reference_information']
# Tokenize inputs
input_encodings = self.tokenizer(
input_text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
# Tokenize targets
target_encodings = self.tokenizer(
target_text,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
return {
'input_ids': input_encodings['input_ids'].squeeze(),
'attention_mask': input_encodings['attention_mask'].squeeze(),
'labels': target_encodings['input_ids'].squeeze()
}
def load_dataset():
"""
Load the travel planning dataset from CSV.
"""
try:
data = pd.read_csv("hf://datasets/osunlp/TravelPlanner/train.csv")
required_columns = ['query', 'reference_information']
for col in required_columns:
if col not in data.columns:
raise ValueError(f"Missing required column: {col}")
print(f"Dataset loaded successfully with {len(data)} rows.")
return data
except Exception as e:
print(f"Error loading dataset: {e}")
sys.exit(1)
def train_model():
try:
# Load dataset
data = load_dataset()
# Initialize model and tokenizer
print("Initializing T5 model and tokenizer...")
tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False)
model = T5ForConditionalGeneration.from_pretrained('t5-base')
# Split data
train_size = int(0.8 * len(data))
train_data = data[:train_size]
val_data = data[train_size:]
train_dataset = TravelDataset(train_data, tokenizer)
val_dataset = TravelDataset(val_data, tokenizer)
training_args = TrainingArguments(
output_dir="./trained_travel_planner",
num_train_epochs=3,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
evaluation_strategy="steps",
eval_steps=50,
save_steps=100,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
load_best_model_at_end=True,
)
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model,
padding=True
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator
)
print("Training model...")
trainer.train()
model.save_pretrained("./trained_travel_planner")
tokenizer.save_pretrained("./trained_travel_planner")
print("Model training complete!")
return model, tokenizer
except Exception as e:
print(f"Training error: {e}")
return None, None
def generate_travel_plan(query, model, tokenizer):
"""
Generate a travel plan using the trained model.
"""
try:
inputs = tokenizer(
query,
return_tensors="pt",
max_length=512,
padding="max_length",
truncation=True
)
if torch.cuda.is_available():
inputs = {k: v.cuda() for k, v in inputs.items()}
model = model.cuda()
outputs = model.generate(
**inputs,
max_length=512,
num_beams=4,
no_repeat_ngram_size=3,
num_return_sequences=1
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"Error generating travel plan: {e}"
def main():
st.set_page_config(
page_title="AI Travel Planner",
page_icon="✈️",
layout="wide"
)
st.title("✈️ AI Travel Planner")
# Sidebar to train model
with st.sidebar:
st.header("Model Management")
if st.button("Retrain Model"):
with st.spinner("Training the model..."):
model, tokenizer = train_model()
if model:
st.session_state['model'] = model
st.session_state['tokenizer'] = tokenizer
st.success("Model retrained successfully!")
else:
st.error("Model retraining failed.")
# Load model if not already loaded
if 'model' not in st.session_state:
with st.spinner("Loading model..."):
model, tokenizer = train_model()
st.session_state['model'] = model
st.session_state['tokenizer'] = tokenizer
# Input query
st.subheader("Plan Your Trip")
query = st.text_area("Enter your trip query (e.g., 'Plan a 3-day trip to Paris focusing on culture and food')")
if st.button("Generate Plan"):
if not query:
st.error("Please enter a query.")
else:
with st.spinner("Generating your travel plan..."):
travel_plan = generate_travel_plan(
query,
st.session_state['model'],
st.session_state['tokenizer']
)
st.subheader("Your Travel Plan")
st.write(travel_plan)
if __name__ == "__main__":
main()
|