Spaces:
Sleeping
Sleeping
Abdulla Fahem
commited on
Commit
•
a86a6db
1
Parent(s):
23d2d4b
Add application file
Browse files
app.py
CHANGED
@@ -19,23 +19,14 @@ torch.manual_seed(42)
|
|
19 |
random.seed(42)
|
20 |
|
21 |
# Environment setup
|
22 |
-
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
23 |
|
24 |
class TravelDataset(Dataset):
|
25 |
def __init__(self, data, tokenizer, max_length=512):
|
26 |
-
"""
|
27 |
-
Initialize the dataset for travel planning
|
28 |
-
|
29 |
-
Parameters:
|
30 |
-
- data: DataFrame containing travel planning data
|
31 |
-
- tokenizer: Tokenizer for encoding input and output
|
32 |
-
- max_length: Maximum sequence length
|
33 |
-
"""
|
34 |
self.tokenizer = tokenizer
|
35 |
self.data = data
|
36 |
self.max_length = max_length
|
37 |
-
|
38 |
-
# Print dataset information
|
39 |
print(f"Dataset loaded with {len(data)} samples")
|
40 |
print("Columns:", list(data.columns))
|
41 |
|
@@ -43,18 +34,12 @@ class TravelDataset(Dataset):
|
|
43 |
return len(self.data)
|
44 |
|
45 |
def __getitem__(self, idx):
|
46 |
-
"""
|
47 |
-
Prepare an individual training sample
|
48 |
-
|
49 |
-
Returns a dictionary with input_ids, attention_mask, and labels
|
50 |
-
"""
|
51 |
row = self.data.iloc[idx]
|
52 |
|
53 |
-
#
|
54 |
-
input_text =
|
55 |
-
|
56 |
-
|
57 |
-
target_text = row['target']
|
58 |
|
59 |
# Tokenize inputs
|
60 |
input_encodings = self.tokenizer(
|
@@ -79,160 +64,100 @@ class TravelDataset(Dataset):
|
|
79 |
'attention_mask': input_encodings['attention_mask'].squeeze(),
|
80 |
'labels': target_encodings['input_ids'].squeeze()
|
81 |
}
|
82 |
-
|
83 |
-
@staticmethod
|
84 |
-
def format_input_text(row):
|
85 |
-
"""
|
86 |
-
Format input text for the model
|
87 |
-
|
88 |
-
This method creates a prompt that the model will use to generate a travel plan
|
89 |
-
"""
|
90 |
-
# Format the input text based on available columns
|
91 |
-
destination = row.get('dest', 'Unknown')
|
92 |
-
days = row.get('days', 3)
|
93 |
-
budget = row.get('budget', 'Moderate')
|
94 |
-
interests = row.get('interests', 'Culture, Food')
|
95 |
-
|
96 |
-
return f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {interests}"
|
97 |
|
98 |
def load_dataset():
|
99 |
"""
|
100 |
-
Load the travel planning dataset from
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
- pandas DataFrame with the dataset
|
104 |
"""
|
105 |
try:
|
106 |
-
# Load dataset from CSV
|
107 |
data = pd.read_csv("hf://datasets/osunlp/TravelPlanner/train.csv")
|
108 |
|
109 |
-
|
110 |
-
required_columns = ['dest', 'days', 'budget', 'interests', 'target']
|
111 |
for col in required_columns:
|
112 |
if col not in data.columns:
|
113 |
raise ValueError(f"Missing required column: {col}")
|
114 |
|
115 |
-
|
116 |
-
print("Dataset successfully loaded")
|
117 |
-
print(f"Total samples: {len(data)}")
|
118 |
-
print("Columns:", list(data.columns))
|
119 |
-
|
120 |
return data
|
121 |
except Exception as e:
|
122 |
print(f"Error loading dataset: {e}")
|
123 |
sys.exit(1)
|
124 |
|
125 |
def train_model():
|
126 |
-
"""
|
127 |
-
Train the T5 model for travel planning
|
128 |
-
|
129 |
-
Returns:
|
130 |
-
- Trained model
|
131 |
-
- Tokenizer
|
132 |
-
"""
|
133 |
try:
|
134 |
# Load dataset
|
135 |
data = load_dataset()
|
136 |
-
|
137 |
# Initialize model and tokenizer
|
138 |
print("Initializing T5 model and tokenizer...")
|
139 |
tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False)
|
140 |
model = T5ForConditionalGeneration.from_pretrained('t5-base')
|
141 |
-
|
142 |
-
# Split data
|
143 |
train_size = int(0.8 * len(data))
|
144 |
train_data = data[:train_size]
|
145 |
val_data = data[train_size:]
|
146 |
-
|
147 |
-
print(f"Training set size: {len(train_data)}")
|
148 |
-
print(f"Validation set size: {len(val_data)}")
|
149 |
-
|
150 |
-
# Create datasets
|
151 |
train_dataset = TravelDataset(train_data, tokenizer)
|
152 |
val_dataset = TravelDataset(val_data, tokenizer)
|
153 |
-
|
154 |
-
# Training arguments
|
155 |
training_args = TrainingArguments(
|
156 |
-
output_dir=
|
157 |
num_train_epochs=3,
|
158 |
per_device_train_batch_size=4,
|
159 |
per_device_eval_batch_size=4,
|
160 |
-
warmup_steps=500,
|
161 |
-
weight_decay=0.01,
|
162 |
-
logging_dir="./logs",
|
163 |
-
logging_steps=10,
|
164 |
evaluation_strategy="steps",
|
165 |
eval_steps=50,
|
166 |
save_steps=100,
|
|
|
|
|
|
|
167 |
load_best_model_at_end=True,
|
168 |
)
|
169 |
-
|
170 |
-
# Data collator
|
171 |
data_collator = DataCollatorForSeq2Seq(
|
172 |
tokenizer=tokenizer,
|
173 |
model=model,
|
174 |
padding=True
|
175 |
)
|
176 |
-
|
177 |
-
# Initialize trainer
|
178 |
trainer = Trainer(
|
179 |
model=model,
|
180 |
args=training_args,
|
181 |
train_dataset=train_dataset,
|
182 |
eval_dataset=val_dataset,
|
183 |
-
data_collator=data_collator
|
184 |
)
|
185 |
-
|
186 |
-
|
187 |
-
print("Starting model training...")
|
188 |
trainer.train()
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
print("Model training completed and saved!")
|
196 |
return model, tokenizer
|
197 |
-
|
198 |
except Exception as e:
|
199 |
-
print(f"
|
200 |
return None, None
|
201 |
|
202 |
-
def generate_travel_plan(
|
203 |
"""
|
204 |
-
Generate a travel plan using the trained model
|
205 |
-
|
206 |
-
Parameters:
|
207 |
-
- destination: Travel destination
|
208 |
-
- days: Trip duration
|
209 |
-
- interests: User's interests
|
210 |
-
- budget: Trip budget level
|
211 |
-
- model: Trained T5 model
|
212 |
-
- tokenizer: Model tokenizer
|
213 |
-
|
214 |
-
Returns:
|
215 |
-
- Generated travel plan
|
216 |
"""
|
217 |
try:
|
218 |
-
# Format input prompt
|
219 |
-
prompt = f"Plan a trip to {destination} for {days} days with a {budget} budget. Include activities related to: {', '.join(interests)}"
|
220 |
-
|
221 |
-
# Tokenize input
|
222 |
inputs = tokenizer(
|
223 |
-
|
224 |
return_tensors="pt",
|
225 |
max_length=512,
|
226 |
padding="max_length",
|
227 |
truncation=True
|
228 |
)
|
229 |
-
|
230 |
-
# Move to GPU if available
|
231 |
if torch.cuda.is_available():
|
232 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
233 |
model = model.cuda()
|
234 |
-
|
235 |
-
# Generate output
|
236 |
outputs = model.generate(
|
237 |
**inputs,
|
238 |
max_length=512,
|
@@ -240,14 +165,10 @@ def generate_travel_plan(destination, days, interests, budget, model, tokenizer)
|
|
240 |
no_repeat_ngram_size=3,
|
241 |
num_return_sequences=1
|
242 |
)
|
243 |
-
|
244 |
-
|
245 |
-
travel_plan = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
246 |
-
return travel_plan
|
247 |
-
|
248 |
except Exception as e:
|
249 |
-
|
250 |
-
return "Could not generate travel plan."
|
251 |
|
252 |
def main():
|
253 |
st.set_page_config(
|
@@ -255,201 +176,44 @@ def main():
|
|
255 |
page_icon="✈️",
|
256 |
layout="wide"
|
257 |
)
|
258 |
-
|
259 |
st.title("✈️ AI Travel Planner")
|
260 |
-
|
261 |
-
|
262 |
-
# Add training button in sidebar only
|
263 |
with st.sidebar:
|
264 |
st.header("Model Management")
|
265 |
if st.button("Retrain Model"):
|
266 |
-
with st.spinner("Training
|
267 |
model, tokenizer = train_model()
|
268 |
-
if model
|
269 |
st.session_state['model'] = model
|
270 |
st.session_state['tokenizer'] = tokenizer
|
271 |
-
st.success("Model
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
# Create two columns for input form
|
296 |
-
col1, col2 = st.columns([2, 1])
|
297 |
-
|
298 |
-
with col1:
|
299 |
-
# Input form in a card-like container
|
300 |
-
with st.container():
|
301 |
-
st.markdown("### 🎯 Plan Your Trip")
|
302 |
-
|
303 |
-
# Destination and Duration row
|
304 |
-
dest_col, days_col = st.columns(2)
|
305 |
-
with dest_col:
|
306 |
-
destination = st.text_input(
|
307 |
-
"🌍 Destination",
|
308 |
-
placeholder="e.g., Paris, Tokyo, New York...",
|
309 |
-
help="Enter the city you want to visit"
|
310 |
-
)
|
311 |
-
|
312 |
-
with days_col:
|
313 |
-
days = st.slider(
|
314 |
-
"📅 Number of days",
|
315 |
-
min_value=1,
|
316 |
-
max_value=14,
|
317 |
-
value=3,
|
318 |
-
help="Select the duration of your trip"
|
319 |
-
)
|
320 |
-
|
321 |
-
# Budget and Interests row
|
322 |
-
budget_col, interests_col = st.columns(2)
|
323 |
-
with budget_col:
|
324 |
-
budget = st.selectbox(
|
325 |
-
"💰 Budget Level",
|
326 |
-
["Budget", "Moderate", "Luxury"],
|
327 |
-
help="Select your preferred budget level"
|
328 |
-
)
|
329 |
-
|
330 |
-
with interests_col:
|
331 |
-
interests = st.multiselect(
|
332 |
-
"🎯 Interests",
|
333 |
-
["Culture", "History", "Food", "Nature", "Shopping",
|
334 |
-
"Adventure", "Relaxation", "Art", "Museums"],
|
335 |
-
["Culture", "Food"],
|
336 |
-
help="Select up to three interests to personalize your plan"
|
337 |
)
|
338 |
-
|
339 |
-
|
340 |
-
# Tips and information
|
341 |
-
st.markdown("### 💡 Travel Tips")
|
342 |
-
st.info("""
|
343 |
-
- Choose up to 3 interests for best results
|
344 |
-
- Consider your travel season
|
345 |
-
- Budget levels affect activity suggestions
|
346 |
-
- Plans are customizable after generation
|
347 |
-
""")
|
348 |
-
|
349 |
-
# Generate button centered
|
350 |
-
col1, col2, col3 = st.columns([1, 2, 1])
|
351 |
-
with col2:
|
352 |
-
generate_button = st.button(
|
353 |
-
"🎨 Generate Travel Plan",
|
354 |
-
type="primary",
|
355 |
-
use_container_width=True
|
356 |
-
)
|
357 |
-
|
358 |
-
if generate_button:
|
359 |
-
if not destination:
|
360 |
-
st.error("Please enter a destination!")
|
361 |
-
return
|
362 |
-
|
363 |
-
if not interests:
|
364 |
-
st.error("Please select at least one interest!")
|
365 |
-
return
|
366 |
-
|
367 |
-
if len(interests) > 3:
|
368 |
-
st.warning("For best results, please select up to 3 interests.")
|
369 |
-
|
370 |
-
with st.spinner("🤖 Creating your personalized travel plan..."):
|
371 |
-
travel_plan = generate_travel_plan(
|
372 |
-
destination,
|
373 |
-
days,
|
374 |
-
interests,
|
375 |
-
budget,
|
376 |
-
st.session_state.model,
|
377 |
-
st.session_state.tokenizer
|
378 |
-
)
|
379 |
-
|
380 |
-
# Create an expander for the success message with trip overview
|
381 |
-
with st.expander("✨ Your travel plan is ready! Click to see trip overview", expanded=True):
|
382 |
-
col1, col2, col3 = st.columns(3)
|
383 |
-
with col1:
|
384 |
-
st.metric("Destination", destination)
|
385 |
-
with col2:
|
386 |
-
if days == 1:
|
387 |
-
st.metric("Duration", f"{days} day")
|
388 |
-
else:
|
389 |
-
st.metric("Duration", f"{days} days")
|
390 |
-
with col3:
|
391 |
-
st.metric("Budget", budget)
|
392 |
-
|
393 |
-
st.write("**Selected Interests:**", ", ".join(interests))
|
394 |
-
|
395 |
-
# Display the plan in tabs with improved styling
|
396 |
-
plan_tab, summary_tab = st.tabs(["📋 Detailed Itinerary", "ℹ️ Trip Summary"])
|
397 |
-
|
398 |
-
with plan_tab:
|
399 |
-
# Add a container for better spacing
|
400 |
-
with st.container():
|
401 |
-
# Add trip title
|
402 |
-
st.markdown(f"## 🌍 {days}-Day Trip to {destination}")
|
403 |
-
st.markdown("---")
|
404 |
-
|
405 |
-
# Display the formatted plan
|
406 |
-
st.markdown(travel_plan)
|
407 |
-
|
408 |
-
# Add export options in a nice container
|
409 |
-
with st.container():
|
410 |
-
st.markdown("---")
|
411 |
-
col1, col2 = st.columns([1, 4])
|
412 |
-
with col1:
|
413 |
-
st.download_button(
|
414 |
-
label="📥 Download Plan",
|
415 |
-
data=travel_plan,
|
416 |
-
file_name=f"travel_plan_{destination.lower().replace(' ', '_')}.md",
|
417 |
-
mime="text/markdown",
|
418 |
-
use_container_width=True
|
419 |
-
)
|
420 |
-
|
421 |
-
with summary_tab:
|
422 |
-
# Create three columns for summary information with cards
|
423 |
-
with st.container():
|
424 |
-
st.markdown("## Trip Overview")
|
425 |
-
sum_col1, sum_col2, sum_col3 = st.columns(3)
|
426 |
-
|
427 |
-
with sum_col1:
|
428 |
-
with st.container():
|
429 |
-
st.markdown("### 📍 Destination Details")
|
430 |
-
st.markdown(f"**Location:** {destination}")
|
431 |
-
if days == 1:
|
432 |
-
st.markdown(f"**Duration:** {days} day")
|
433 |
-
else:
|
434 |
-
st.markdown(f"**Duration:** {days} days")
|
435 |
-
st.markdown(f"**Budget Level:** {budget}")
|
436 |
-
|
437 |
-
with sum_col2:
|
438 |
-
with st.container():
|
439 |
-
st.markdown("### 🎯 Trip Focus")
|
440 |
-
st.markdown("**Selected Interests:**")
|
441 |
-
for interest in interests:
|
442 |
-
st.markdown(f"- {interest}")
|
443 |
-
|
444 |
-
with sum_col3:
|
445 |
-
with st.container():
|
446 |
-
st.markdown("### ⚠️ Travel Tips")
|
447 |
-
st.info(
|
448 |
-
"• Verify opening hours\n"
|
449 |
-
"• Check current prices\n"
|
450 |
-
"• Confirm availability\n"
|
451 |
-
"• Consider seasonal factors"
|
452 |
-
)
|
453 |
|
454 |
if __name__ == "__main__":
|
455 |
-
main()
|
|
|
19 |
random.seed(42)
|
20 |
|
21 |
# Environment setup
|
22 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
23 |
|
24 |
class TravelDataset(Dataset):
|
25 |
def __init__(self, data, tokenizer, max_length=512):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
self.tokenizer = tokenizer
|
27 |
self.data = data
|
28 |
self.max_length = max_length
|
29 |
+
|
|
|
30 |
print(f"Dataset loaded with {len(data)} samples")
|
31 |
print("Columns:", list(data.columns))
|
32 |
|
|
|
34 |
return len(self.data)
|
35 |
|
36 |
def __getitem__(self, idx):
|
|
|
|
|
|
|
|
|
|
|
37 |
row = self.data.iloc[idx]
|
38 |
|
39 |
+
# Input: query
|
40 |
+
input_text = row['query']
|
41 |
+
# Target: reference_information
|
42 |
+
target_text = row['reference_information']
|
|
|
43 |
|
44 |
# Tokenize inputs
|
45 |
input_encodings = self.tokenizer(
|
|
|
64 |
'attention_mask': input_encodings['attention_mask'].squeeze(),
|
65 |
'labels': target_encodings['input_ids'].squeeze()
|
66 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def load_dataset():
|
69 |
"""
|
70 |
+
Load the travel planning dataset from CSV.
|
|
|
|
|
|
|
71 |
"""
|
72 |
try:
|
|
|
73 |
data = pd.read_csv("hf://datasets/osunlp/TravelPlanner/train.csv")
|
74 |
|
75 |
+
required_columns = ['query', 'reference_information']
|
|
|
76 |
for col in required_columns:
|
77 |
if col not in data.columns:
|
78 |
raise ValueError(f"Missing required column: {col}")
|
79 |
|
80 |
+
print(f"Dataset loaded successfully with {len(data)} rows.")
|
|
|
|
|
|
|
|
|
81 |
return data
|
82 |
except Exception as e:
|
83 |
print(f"Error loading dataset: {e}")
|
84 |
sys.exit(1)
|
85 |
|
86 |
def train_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
try:
|
88 |
# Load dataset
|
89 |
data = load_dataset()
|
90 |
+
|
91 |
# Initialize model and tokenizer
|
92 |
print("Initializing T5 model and tokenizer...")
|
93 |
tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False)
|
94 |
model = T5ForConditionalGeneration.from_pretrained('t5-base')
|
95 |
+
|
96 |
+
# Split data
|
97 |
train_size = int(0.8 * len(data))
|
98 |
train_data = data[:train_size]
|
99 |
val_data = data[train_size:]
|
100 |
+
|
|
|
|
|
|
|
|
|
101 |
train_dataset = TravelDataset(train_data, tokenizer)
|
102 |
val_dataset = TravelDataset(val_data, tokenizer)
|
103 |
+
|
|
|
104 |
training_args = TrainingArguments(
|
105 |
+
output_dir="./trained_travel_planner",
|
106 |
num_train_epochs=3,
|
107 |
per_device_train_batch_size=4,
|
108 |
per_device_eval_batch_size=4,
|
|
|
|
|
|
|
|
|
109 |
evaluation_strategy="steps",
|
110 |
eval_steps=50,
|
111 |
save_steps=100,
|
112 |
+
weight_decay=0.01,
|
113 |
+
logging_dir="./logs",
|
114 |
+
logging_steps=10,
|
115 |
load_best_model_at_end=True,
|
116 |
)
|
117 |
+
|
|
|
118 |
data_collator = DataCollatorForSeq2Seq(
|
119 |
tokenizer=tokenizer,
|
120 |
model=model,
|
121 |
padding=True
|
122 |
)
|
123 |
+
|
|
|
124 |
trainer = Trainer(
|
125 |
model=model,
|
126 |
args=training_args,
|
127 |
train_dataset=train_dataset,
|
128 |
eval_dataset=val_dataset,
|
129 |
+
data_collator=data_collator
|
130 |
)
|
131 |
+
|
132 |
+
print("Training model...")
|
|
|
133 |
trainer.train()
|
134 |
+
|
135 |
+
model.save_pretrained("./trained_travel_planner")
|
136 |
+
tokenizer.save_pretrained("./trained_travel_planner")
|
137 |
+
|
138 |
+
print("Model training complete!")
|
|
|
|
|
139 |
return model, tokenizer
|
|
|
140 |
except Exception as e:
|
141 |
+
print(f"Training error: {e}")
|
142 |
return None, None
|
143 |
|
144 |
+
def generate_travel_plan(query, model, tokenizer):
|
145 |
"""
|
146 |
+
Generate a travel plan using the trained model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
"""
|
148 |
try:
|
|
|
|
|
|
|
|
|
149 |
inputs = tokenizer(
|
150 |
+
query,
|
151 |
return_tensors="pt",
|
152 |
max_length=512,
|
153 |
padding="max_length",
|
154 |
truncation=True
|
155 |
)
|
156 |
+
|
|
|
157 |
if torch.cuda.is_available():
|
158 |
inputs = {k: v.cuda() for k, v in inputs.items()}
|
159 |
model = model.cuda()
|
160 |
+
|
|
|
161 |
outputs = model.generate(
|
162 |
**inputs,
|
163 |
max_length=512,
|
|
|
165 |
no_repeat_ngram_size=3,
|
166 |
num_return_sequences=1
|
167 |
)
|
168 |
+
|
169 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
170 |
except Exception as e:
|
171 |
+
return f"Error generating travel plan: {e}"
|
|
|
172 |
|
173 |
def main():
|
174 |
st.set_page_config(
|
|
|
176 |
page_icon="✈️",
|
177 |
layout="wide"
|
178 |
)
|
|
|
179 |
st.title("✈️ AI Travel Planner")
|
180 |
+
|
181 |
+
# Sidebar to train model
|
|
|
182 |
with st.sidebar:
|
183 |
st.header("Model Management")
|
184 |
if st.button("Retrain Model"):
|
185 |
+
with st.spinner("Training the model..."):
|
186 |
model, tokenizer = train_model()
|
187 |
+
if model:
|
188 |
st.session_state['model'] = model
|
189 |
st.session_state['tokenizer'] = tokenizer
|
190 |
+
st.success("Model retrained successfully!")
|
191 |
+
else:
|
192 |
+
st.error("Model retraining failed.")
|
193 |
+
|
194 |
+
# Load model if not already loaded
|
195 |
+
if 'model' not in st.session_state:
|
196 |
+
with st.spinner("Loading model..."):
|
197 |
+
model, tokenizer = train_model()
|
198 |
+
st.session_state['model'] = model
|
199 |
+
st.session_state['tokenizer'] = tokenizer
|
200 |
+
|
201 |
+
# Input query
|
202 |
+
st.subheader("Plan Your Trip")
|
203 |
+
query = st.text_area("Enter your trip query (e.g., 'Plan a 3-day trip to Paris focusing on culture and food')")
|
204 |
+
|
205 |
+
if st.button("Generate Plan"):
|
206 |
+
if not query:
|
207 |
+
st.error("Please enter a query.")
|
208 |
+
else:
|
209 |
+
with st.spinner("Generating your travel plan..."):
|
210 |
+
travel_plan = generate_travel_plan(
|
211 |
+
query,
|
212 |
+
st.session_state['model'],
|
213 |
+
st.session_state['tokenizer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
+
st.subheader("Your Travel Plan")
|
216 |
+
st.write(travel_plan)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
if __name__ == "__main__":
|
219 |
+
main()
|