File size: 10,691 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import nltk
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(__file__)))

from configs import VERSION
from configs.model_config import NLTK_DATA_PATH
from configs.server_config import OPEN_CROSS_DOMAIN
import argparse
import uvicorn
from fastapi import Body
from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import RedirectResponse
from server.chat.chat import chat
from server.chat.search_engine_chat import search_engine_chat
from server.chat.completion import completion
from server.chat.feedback import chat_feedback
from server.embeddings_api import embed_texts_endpoint
from server.llm_api import (list_running_models, list_config_models,
                            change_llm_model, stop_llm_model,
                            get_model_config, list_search_engines)
from server.utils import (BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline,
                          get_server_configs, get_prompt_template)
from typing import List, Literal

nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path


async def document():
    return RedirectResponse(url="/docs")


def create_app(run_mode: str = None):
    app = FastAPI(
        title="Langchain-Chatchat API Server",
        version=VERSION
    )
    MakeFastAPIOffline(app)
    # Add CORS middleware to allow all origins
    # 在config.py中设置OPEN_DOMAIN=True,允许跨域
    # set OPEN_DOMAIN=True in config.py to allow cross-domain
    if OPEN_CROSS_DOMAIN:
        app.add_middleware(
            CORSMiddleware,
            allow_origins=["*"],
            allow_credentials=True,
            allow_methods=["*"],
            allow_headers=["*"],
        )
    mount_app_routes(app, run_mode=run_mode)
    return app


def mount_app_routes(app: FastAPI, run_mode: str = None):
    app.get("/",
            response_model=BaseResponse,
            summary="swagger 文档")(document)

    # Tag: Chat
    app.post("/chat/chat",
             tags=["Chat"],
             summary="与llm模型对话(通过LLMChain)",
             )(chat)

    app.post("/chat/search_engine_chat",
             tags=["Chat"],
             summary="与搜索引擎对话",
             )(search_engine_chat)

    app.post("/chat/feedback",
             tags=["Chat"],
             summary="返回llm模型对话评分",
             )(chat_feedback)

    # 知识库相关接口
    mount_knowledge_routes(app)
    # 摘要相关接口
    mount_filename_summary_routes(app)

    # LLM模型相关接口
    app.post("/llm_model/list_running_models",
             tags=["LLM Model Management"],
             summary="列出当前已加载的模型",
             )(list_running_models)

    app.post("/llm_model/list_config_models",
             tags=["LLM Model Management"],
             summary="列出configs已配置的模型",
             )(list_config_models)

    app.post("/llm_model/get_model_config",
             tags=["LLM Model Management"],
             summary="获取模型配置(合并后)",
             )(get_model_config)

    app.post("/llm_model/stop",
             tags=["LLM Model Management"],
             summary="停止指定的LLM模型(Model Worker)",
             )(stop_llm_model)

    app.post("/llm_model/change",
             tags=["LLM Model Management"],
             summary="切换指定的LLM模型(Model Worker)",
             )(change_llm_model)

    # 服务器相关接口
    app.post("/server/configs",
             tags=["Server State"],
             summary="获取服务器原始配置信息",
             )(get_server_configs)

    app.post("/server/list_search_engines",
             tags=["Server State"],
             summary="获取服务器支持的搜索引擎",
             )(list_search_engines)

    @app.post("/server/get_prompt_template",
             tags=["Server State"],
             summary="获取服务区配置的 prompt 模板")
    def get_server_prompt_template(
        type: Literal["llm_chat", "knowledge_base_chat", "search_engine_chat", "agent_chat"]=Body("llm_chat", description="模板类型,可选值:llm_chat,knowledge_base_chat,search_engine_chat,agent_chat"),
        name: str = Body("default", description="模板名称"),
    ) -> str:
        return get_prompt_template(type=type, name=name)

    # 其它接口
    app.post("/other/completion",
             tags=["Other"],
             summary="要求llm模型补全(通过LLMChain)",
             )(completion)

    app.post("/other/embed_texts",
            tags=["Other"],
            summary="将文本向量化,支持本地模型和在线模型",
            )(embed_texts_endpoint)


def mount_knowledge_routes(app: FastAPI):
    from server.chat.knowledge_base_chat import knowledge_base_chat
    from server.chat.file_chat import upload_temp_docs, file_chat
    from server.chat.agent_chat import agent_chat
    from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb
    from server.knowledge_base.kb_doc_api import (list_files, upload_docs, delete_docs,
                                                update_docs, download_doc, recreate_vector_store,
                                                search_docs, DocumentWithVSId, update_info,
                                                update_docs_by_id,)

    app.post("/chat/knowledge_base_chat",
             tags=["Chat"],
             summary="与知识库对话")(knowledge_base_chat)

    app.post("/chat/file_chat",
             tags=["Knowledge Base Management"],
             summary="文件对话"
             )(file_chat)

    app.post("/chat/agent_chat",
             tags=["Chat"],
             summary="与agent对话")(agent_chat)

    # Tag: Knowledge Base Management
    app.get("/knowledge_base/list_knowledge_bases",
            tags=["Knowledge Base Management"],
            response_model=ListResponse,
            summary="获取知识库列表")(list_kbs)

    app.post("/knowledge_base/create_knowledge_base",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="创建知识库"
             )(create_kb)

    app.post("/knowledge_base/delete_knowledge_base",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="删除知识库"
             )(delete_kb)

    app.get("/knowledge_base/list_files",
            tags=["Knowledge Base Management"],
            response_model=ListResponse,
            summary="获取知识库内的文件列表"
            )(list_files)

    app.post("/knowledge_base/search_docs",
             tags=["Knowledge Base Management"],
             response_model=List[DocumentWithVSId],
             summary="搜索知识库"
             )(search_docs)

    app.post("/knowledge_base/update_docs_by_id",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="直接更新知识库文档"
             )(update_docs_by_id)


    app.post("/knowledge_base/upload_docs",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="上传文件到知识库,并/或进行向量化"
             )(upload_docs)

    app.post("/knowledge_base/delete_docs",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="删除知识库内指定文件"
             )(delete_docs)

    app.post("/knowledge_base/update_info",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="更新知识库介绍"
             )(update_info)
    app.post("/knowledge_base/update_docs",
             tags=["Knowledge Base Management"],
             response_model=BaseResponse,
             summary="更新现有文件到知识库"
             )(update_docs)

    app.get("/knowledge_base/download_doc",
            tags=["Knowledge Base Management"],
            summary="下载对应的知识文件")(download_doc)

    app.post("/knowledge_base/recreate_vector_store",
             tags=["Knowledge Base Management"],
             summary="根据content中文档重建向量库,流式输出处理进度。"
             )(recreate_vector_store)

    app.post("/knowledge_base/upload_temp_docs",
             tags=["Knowledge Base Management"],
             summary="上传文件到临时目录,用于文件对话。"
             )(upload_temp_docs)


def mount_filename_summary_routes(app: FastAPI):
    from server.knowledge_base.kb_summary_api import (summary_file_to_vector_store, recreate_summary_vector_store,
                                                      summary_doc_ids_to_vector_store)

    app.post("/knowledge_base/kb_summary_api/summary_file_to_vector_store",
             tags=["Knowledge kb_summary_api Management"],
             summary="单个知识库根据文件名称摘要"
             )(summary_file_to_vector_store)
    app.post("/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store",
             tags=["Knowledge kb_summary_api Management"],
             summary="单个知识库根据doc_ids摘要",
             response_model=BaseResponse,
             )(summary_doc_ids_to_vector_store)
    app.post("/knowledge_base/kb_summary_api/recreate_summary_vector_store",
             tags=["Knowledge kb_summary_api Management"],
             summary="重建单个知识库文件摘要"
             )(recreate_summary_vector_store)



def run_api(host, port, **kwargs):
    if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"):
        uvicorn.run(app,
                    host=host,
                    port=port,
                    ssl_keyfile=kwargs.get("ssl_keyfile"),
                    ssl_certfile=kwargs.get("ssl_certfile"),
                    )
    else:
        uvicorn.run(app, host=host, port=port)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(prog='langchain-ChatGLM',
                                     description='About langchain-ChatGLM, local knowledge based ChatGLM with langchain'
                                                 ' | 基于本地知识库的 ChatGLM 问答')
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7861)
    parser.add_argument("--ssl_keyfile", type=str)
    parser.add_argument("--ssl_certfile", type=str)
    # 初始化消息
    args = parser.parse_args()
    args_dict = vars(args)

    app = create_app()

    run_api(host=args.host,
            port=args.port,
            ssl_keyfile=args.ssl_keyfile,
            ssl_certfile=args.ssl_certfile,
            )