File size: 16,736 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import os
from configs import (
    KB_ROOT_PATH,
    CHUNK_SIZE,
    OVERLAP_SIZE,
    ZH_TITLE_ENHANCE,
    logger,
    log_verbose,
    text_splitter_dict,
    LLM_MODELS,
    TEXT_SPLITTER_NAME,
)
import importlib
from text_splitter import zh_title_enhance as func_zh_title_enhance
import langchain.document_loaders
from langchain.docstore.document import Document
from langchain.text_splitter import TextSplitter
from pathlib import Path
from server.utils import run_in_thread_pool, get_model_worker_config
import json
from typing import List, Union,Dict, Tuple, Generator
import chardet


def validate_kb_name(knowledge_base_id: str) -> bool:
    # 检查是否包含预期外的字符或路径攻击关键字
    if "../" in knowledge_base_id:
        return False
    return True


def get_kb_path(knowledge_base_name: str):
    return os.path.join(KB_ROOT_PATH, knowledge_base_name)


def get_doc_path(knowledge_base_name: str):
    return os.path.join(get_kb_path(knowledge_base_name), "content")


def get_vs_path(knowledge_base_name: str, vector_name: str):
    return os.path.join(get_kb_path(knowledge_base_name), "vector_store", vector_name)


def get_file_path(knowledge_base_name: str, doc_name: str):
    return os.path.join(get_doc_path(knowledge_base_name), doc_name)


def list_kbs_from_folder():
    return [f for f in os.listdir(KB_ROOT_PATH)
            if os.path.isdir(os.path.join(KB_ROOT_PATH, f))]


def list_files_from_folder(kb_name: str):
    doc_path = get_doc_path(kb_name)
    result = []

    def is_skiped_path(path: str):
        tail = os.path.basename(path).lower()
        for x in ["temp", "tmp", ".", "~$"]:
            if tail.startswith(x):
                return True
        return False

    def process_entry(entry):
        if is_skiped_path(entry.path):
            return

        if entry.is_symlink():
            target_path = os.path.realpath(entry.path)
            with os.scandir(target_path) as target_it:
                for target_entry in target_it:
                    process_entry(target_entry)
        elif entry.is_file():
            file_path = (Path(os.path.relpath(entry.path, doc_path)).as_posix()) # 路径统一为 posix 格式
            result.append(file_path)
        elif entry.is_dir():
            with os.scandir(entry.path) as it:
                for sub_entry in it:
                    process_entry(sub_entry)

    with os.scandir(doc_path) as it:
        for entry in it:
            process_entry(entry)

    return result


LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
               "MHTMLLoader": ['.mhtml'],
               "UnstructuredMarkdownLoader": ['.md'],
               "JSONLoader": [".json"],
               "JSONLinesLoader": [".jsonl"],
               "CSVLoader": [".csv"],
               # "FilteredCSVLoader": [".csv"], 如果使用自定义分割csv
               "RapidOCRPDFLoader": [".pdf"],
               "RapidOCRDocLoader": ['.docx', '.doc'],
               "RapidOCRPPTLoader": ['.ppt', '.pptx', ],
               "RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
               "UnstructuredFileLoader": ['.eml', '.msg', '.rst',
                                          '.rtf', '.txt', '.xml',
                                          '.epub', '.odt','.tsv'],
               "UnstructuredEmailLoader": ['.eml', '.msg'],
               "UnstructuredEPubLoader": ['.epub'],
               "UnstructuredExcelLoader": ['.xlsx', '.xls', '.xlsd'],
               "NotebookLoader": ['.ipynb'],
               "UnstructuredODTLoader": ['.odt'],
               "PythonLoader": ['.py'],
               "UnstructuredRSTLoader": ['.rst'],
               "UnstructuredRTFLoader": ['.rtf'],
               "SRTLoader": ['.srt'],
               "TomlLoader": ['.toml'],
               "UnstructuredTSVLoader": ['.tsv'],
               "UnstructuredWordDocumentLoader": ['.docx', '.doc'],
               "UnstructuredXMLLoader": ['.xml'],
               "UnstructuredPowerPointLoader": ['.ppt', '.pptx'],
               "EverNoteLoader": ['.enex'],
               }
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]


# patch json.dumps to disable ensure_ascii
def _new_json_dumps(obj, **kwargs):
    kwargs["ensure_ascii"] = False
    return _origin_json_dumps(obj, **kwargs)

if json.dumps is not _new_json_dumps:
    _origin_json_dumps = json.dumps
    json.dumps = _new_json_dumps


class JSONLinesLoader(langchain.document_loaders.JSONLoader):
    '''
    行式 Json 加载器,要求文件扩展名为 .jsonl
    '''
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._json_lines = True


langchain.document_loaders.JSONLinesLoader = JSONLinesLoader


def get_LoaderClass(file_extension):
    for LoaderClass, extensions in LOADER_DICT.items():
        if file_extension in extensions:
            return LoaderClass

def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
    '''
    根据loader_name和文件路径或内容返回文档加载器。
    '''
    loader_kwargs = loader_kwargs or {}
    try:
        if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader",
                           "RapidOCRDocLoader", "RapidOCRPPTLoader"]:
            document_loaders_module = importlib.import_module('document_loaders')
        else:
            document_loaders_module = importlib.import_module('langchain.document_loaders')
        DocumentLoader = getattr(document_loaders_module, loader_name)
    except Exception as e:
        msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
        logger.error(f'{e.__class__.__name__}: {msg}',
                     exc_info=e if log_verbose else None)
        document_loaders_module = importlib.import_module('langchain.document_loaders')
        DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")

    if loader_name == "UnstructuredFileLoader":
        loader_kwargs.setdefault("autodetect_encoding", True)
    elif loader_name == "CSVLoader":
        if not loader_kwargs.get("encoding"):
            # 如果未指定 encoding,自动识别文件编码类型,避免langchain loader 加载文件报编码错误
            with open(file_path, 'rb') as struct_file:
                encode_detect = chardet.detect(struct_file.read())
            if encode_detect is None:
                encode_detect = {"encoding": "utf-8"}
            loader_kwargs["encoding"] = encode_detect["encoding"]

    elif loader_name == "JSONLoader":
        loader_kwargs.setdefault("jq_schema", ".")
        loader_kwargs.setdefault("text_content", False)
    elif loader_name == "JSONLinesLoader":
        loader_kwargs.setdefault("jq_schema", ".")
        loader_kwargs.setdefault("text_content", False)

    loader = DocumentLoader(file_path, **loader_kwargs)
    return loader


def make_text_splitter(
        splitter_name: str = TEXT_SPLITTER_NAME,
        chunk_size: int = CHUNK_SIZE,
        chunk_overlap: int = OVERLAP_SIZE,
        llm_model: str = LLM_MODELS[0],
):
    """
    根据参数获取特定的分词器
    """
    splitter_name = splitter_name or "SpacyTextSplitter"
    try:
        if splitter_name == "MarkdownHeaderTextSplitter":  # MarkdownHeaderTextSplitter特殊判定
            headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on']
            text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter(
                headers_to_split_on=headers_to_split_on)
        else:

            try:  ## 优先使用用户自定义的text_splitter
                text_splitter_module = importlib.import_module('text_splitter')
                TextSplitter = getattr(text_splitter_module, splitter_name)
            except:  ## 否则使用langchain的text_splitter
                text_splitter_module = importlib.import_module('langchain.text_splitter')
                TextSplitter = getattr(text_splitter_module, splitter_name)

            if text_splitter_dict[splitter_name]["source"] == "tiktoken":  ## 从tiktoken加载
                try:
                    text_splitter = TextSplitter.from_tiktoken_encoder(
                        encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
                        pipeline="zh_core_web_sm",
                        chunk_size=chunk_size,
                        chunk_overlap=chunk_overlap
                    )
                except:
                    text_splitter = TextSplitter.from_tiktoken_encoder(
                        encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
                        chunk_size=chunk_size,
                        chunk_overlap=chunk_overlap
                    )
            elif text_splitter_dict[splitter_name]["source"] == "huggingface":  ## 从huggingface加载
                if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "":
                    config = get_model_worker_config(llm_model)
                    text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \
                        config.get("model_path")

                if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2":
                    from transformers import GPT2TokenizerFast
                    from langchain.text_splitter import CharacterTextSplitter
                    tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
                else:  ## 字符长度加载
                    from transformers import AutoTokenizer
                    tokenizer = AutoTokenizer.from_pretrained(
                        text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
                        trust_remote_code=True)
                text_splitter = TextSplitter.from_huggingface_tokenizer(
                    tokenizer=tokenizer,
                    chunk_size=chunk_size,
                    chunk_overlap=chunk_overlap
                )
            else:
                try:
                    text_splitter = TextSplitter(
                        pipeline="zh_core_web_sm",
                        chunk_size=chunk_size,
                        chunk_overlap=chunk_overlap
                    )
                except:
                    text_splitter = TextSplitter(
                        chunk_size=chunk_size,
                        chunk_overlap=chunk_overlap
                    )
    except Exception as e:
        print(e)
        text_splitter_module = importlib.import_module('langchain.text_splitter')
        TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
        text_splitter = TextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
        
    # If you use SpacyTextSplitter you can use GPU to do split likes Issue #1287
    # text_splitter._tokenizer.max_length = 37016792
    # text_splitter._tokenizer.prefer_gpu()
    return text_splitter


class KnowledgeFile:
    def __init__(
            self,
            filename: str,
            knowledge_base_name: str,
            loader_kwargs: Dict = {},
    ):
        '''
        对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。
        '''
        self.kb_name = knowledge_base_name
        self.filename = str(Path(filename).as_posix())
        self.ext = os.path.splitext(filename)[-1].lower()
        if self.ext not in SUPPORTED_EXTS:
            raise ValueError(f"暂未支持的文件格式 {self.filename}")
        self.loader_kwargs = loader_kwargs
        self.filepath = get_file_path(knowledge_base_name, filename)
        self.docs = None
        self.splited_docs = None
        self.document_loader_name = get_LoaderClass(self.ext)
        self.text_splitter_name = TEXT_SPLITTER_NAME

    def file2docs(self, refresh: bool = False):
        if self.docs is None or refresh:
            logger.info(f"{self.document_loader_name} used for {self.filepath}")
            loader = get_loader(loader_name=self.document_loader_name,
                                file_path=self.filepath,
                                loader_kwargs=self.loader_kwargs)
            self.docs = loader.load()
        return self.docs

    def docs2texts(
            self,
            docs: List[Document] = None,
            zh_title_enhance: bool = ZH_TITLE_ENHANCE,
            refresh: bool = False,
            chunk_size: int = CHUNK_SIZE,
            chunk_overlap: int = OVERLAP_SIZE,
            text_splitter: TextSplitter = None,
    ):
        docs = docs or self.file2docs(refresh=refresh)
        if not docs:
            return []
        if self.ext not in [".csv"]:
            if text_splitter is None:
                text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size,
                                                   chunk_overlap=chunk_overlap)
            if self.text_splitter_name == "MarkdownHeaderTextSplitter":
                docs = text_splitter.split_text(docs[0].page_content)
            else:
                docs = text_splitter.split_documents(docs)

        if not docs:
            return []

        print(f"文档切分示例:{docs[0]}")
        if zh_title_enhance:
            docs = func_zh_title_enhance(docs)
        self.splited_docs = docs
        return self.splited_docs

    def file2text(
            self,
            zh_title_enhance: bool = ZH_TITLE_ENHANCE,
            refresh: bool = False,
            chunk_size: int = CHUNK_SIZE,
            chunk_overlap: int = OVERLAP_SIZE,
            text_splitter: TextSplitter = None,
    ):
        if self.splited_docs is None or refresh:
            docs = self.file2docs()
            self.splited_docs = self.docs2texts(docs=docs,
                                                zh_title_enhance=zh_title_enhance,
                                                refresh=refresh,
                                                chunk_size=chunk_size,
                                                chunk_overlap=chunk_overlap,
                                                text_splitter=text_splitter)
        return self.splited_docs

    def file_exist(self):
        return os.path.isfile(self.filepath)

    def get_mtime(self):
        return os.path.getmtime(self.filepath)

    def get_size(self):
        return os.path.getsize(self.filepath)


def files2docs_in_thread(
        files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
        chunk_size: int = CHUNK_SIZE,
        chunk_overlap: int = OVERLAP_SIZE,
        zh_title_enhance: bool = ZH_TITLE_ENHANCE,
) -> Generator:
    '''
    利用多线程批量将磁盘文件转化成langchain Document.
    如果传入参数是Tuple,形式为(filename, kb_name)
    生成器返回值为 status, (kb_name, file_name, docs | error)
    '''

    def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]:
        try:
            return True, (file.kb_name, file.filename, file.file2text(**kwargs))
        except Exception as e:
            msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
            logger.error(f'{e.__class__.__name__}: {msg}',
                         exc_info=e if log_verbose else None)
            return False, (file.kb_name, file.filename, msg)

    kwargs_list = []
    for i, file in enumerate(files):
        kwargs = {}
        try:
            if isinstance(file, tuple) and len(file) >= 2:
                filename = file[0]
                kb_name = file[1]
                file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
            elif isinstance(file, dict):
                filename = file.pop("filename")
                kb_name = file.pop("kb_name")
                kwargs.update(file)
                file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
            kwargs["file"] = file
            kwargs["chunk_size"] = chunk_size
            kwargs["chunk_overlap"] = chunk_overlap
            kwargs["zh_title_enhance"] = zh_title_enhance
            kwargs_list.append(kwargs)
        except Exception as e:
            yield False, (kb_name, filename, str(e))

    for result in run_in_thread_pool(func=file2docs, params=kwargs_list):
        yield result


if __name__ == "__main__":
    from pprint import pprint

    kb_file = KnowledgeFile(
        filename="/home/congyin/Code/Project_Langchain_0814/Langchain-Chatchat/knowledge_base/csv1/content/gm.csv",
        knowledge_base_name="samples")
    # kb_file.text_splitter_name = "RecursiveCharacterTextSplitter"
    docs = kb_file.file2docs()
    # pprint(docs[-1])