Spaces:
Running
Running
File size: 16,736 Bytes
5e9cd1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import os
from configs import (
KB_ROOT_PATH,
CHUNK_SIZE,
OVERLAP_SIZE,
ZH_TITLE_ENHANCE,
logger,
log_verbose,
text_splitter_dict,
LLM_MODELS,
TEXT_SPLITTER_NAME,
)
import importlib
from text_splitter import zh_title_enhance as func_zh_title_enhance
import langchain.document_loaders
from langchain.docstore.document import Document
from langchain.text_splitter import TextSplitter
from pathlib import Path
from server.utils import run_in_thread_pool, get_model_worker_config
import json
from typing import List, Union,Dict, Tuple, Generator
import chardet
def validate_kb_name(knowledge_base_id: str) -> bool:
# 检查是否包含预期外的字符或路径攻击关键字
if "../" in knowledge_base_id:
return False
return True
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
def get_doc_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "content")
def get_vs_path(knowledge_base_name: str, vector_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "vector_store", vector_name)
def get_file_path(knowledge_base_name: str, doc_name: str):
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
def list_kbs_from_folder():
return [f for f in os.listdir(KB_ROOT_PATH)
if os.path.isdir(os.path.join(KB_ROOT_PATH, f))]
def list_files_from_folder(kb_name: str):
doc_path = get_doc_path(kb_name)
result = []
def is_skiped_path(path: str):
tail = os.path.basename(path).lower()
for x in ["temp", "tmp", ".", "~$"]:
if tail.startswith(x):
return True
return False
def process_entry(entry):
if is_skiped_path(entry.path):
return
if entry.is_symlink():
target_path = os.path.realpath(entry.path)
with os.scandir(target_path) as target_it:
for target_entry in target_it:
process_entry(target_entry)
elif entry.is_file():
file_path = (Path(os.path.relpath(entry.path, doc_path)).as_posix()) # 路径统一为 posix 格式
result.append(file_path)
elif entry.is_dir():
with os.scandir(entry.path) as it:
for sub_entry in it:
process_entry(sub_entry)
with os.scandir(doc_path) as it:
for entry in it:
process_entry(entry)
return result
LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
"MHTMLLoader": ['.mhtml'],
"UnstructuredMarkdownLoader": ['.md'],
"JSONLoader": [".json"],
"JSONLinesLoader": [".jsonl"],
"CSVLoader": [".csv"],
# "FilteredCSVLoader": [".csv"], 如果使用自定义分割csv
"RapidOCRPDFLoader": [".pdf"],
"RapidOCRDocLoader": ['.docx', '.doc'],
"RapidOCRPPTLoader": ['.ppt', '.pptx', ],
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
"UnstructuredFileLoader": ['.eml', '.msg', '.rst',
'.rtf', '.txt', '.xml',
'.epub', '.odt','.tsv'],
"UnstructuredEmailLoader": ['.eml', '.msg'],
"UnstructuredEPubLoader": ['.epub'],
"UnstructuredExcelLoader": ['.xlsx', '.xls', '.xlsd'],
"NotebookLoader": ['.ipynb'],
"UnstructuredODTLoader": ['.odt'],
"PythonLoader": ['.py'],
"UnstructuredRSTLoader": ['.rst'],
"UnstructuredRTFLoader": ['.rtf'],
"SRTLoader": ['.srt'],
"TomlLoader": ['.toml'],
"UnstructuredTSVLoader": ['.tsv'],
"UnstructuredWordDocumentLoader": ['.docx', '.doc'],
"UnstructuredXMLLoader": ['.xml'],
"UnstructuredPowerPointLoader": ['.ppt', '.pptx'],
"EverNoteLoader": ['.enex'],
}
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
# patch json.dumps to disable ensure_ascii
def _new_json_dumps(obj, **kwargs):
kwargs["ensure_ascii"] = False
return _origin_json_dumps(obj, **kwargs)
if json.dumps is not _new_json_dumps:
_origin_json_dumps = json.dumps
json.dumps = _new_json_dumps
class JSONLinesLoader(langchain.document_loaders.JSONLoader):
'''
行式 Json 加载器,要求文件扩展名为 .jsonl
'''
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._json_lines = True
langchain.document_loaders.JSONLinesLoader = JSONLinesLoader
def get_LoaderClass(file_extension):
for LoaderClass, extensions in LOADER_DICT.items():
if file_extension in extensions:
return LoaderClass
def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
'''
根据loader_name和文件路径或内容返回文档加载器。
'''
loader_kwargs = loader_kwargs or {}
try:
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader",
"RapidOCRDocLoader", "RapidOCRPPTLoader"]:
document_loaders_module = importlib.import_module('document_loaders')
else:
document_loaders_module = importlib.import_module('langchain.document_loaders')
DocumentLoader = getattr(document_loaders_module, loader_name)
except Exception as e:
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
document_loaders_module = importlib.import_module('langchain.document_loaders')
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
if loader_name == "UnstructuredFileLoader":
loader_kwargs.setdefault("autodetect_encoding", True)
elif loader_name == "CSVLoader":
if not loader_kwargs.get("encoding"):
# 如果未指定 encoding,自动识别文件编码类型,避免langchain loader 加载文件报编码错误
with open(file_path, 'rb') as struct_file:
encode_detect = chardet.detect(struct_file.read())
if encode_detect is None:
encode_detect = {"encoding": "utf-8"}
loader_kwargs["encoding"] = encode_detect["encoding"]
elif loader_name == "JSONLoader":
loader_kwargs.setdefault("jq_schema", ".")
loader_kwargs.setdefault("text_content", False)
elif loader_name == "JSONLinesLoader":
loader_kwargs.setdefault("jq_schema", ".")
loader_kwargs.setdefault("text_content", False)
loader = DocumentLoader(file_path, **loader_kwargs)
return loader
def make_text_splitter(
splitter_name: str = TEXT_SPLITTER_NAME,
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
llm_model: str = LLM_MODELS[0],
):
"""
根据参数获取特定的分词器
"""
splitter_name = splitter_name or "SpacyTextSplitter"
try:
if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定
headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on']
text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on)
else:
try: ## 优先使用用户自定义的text_splitter
text_splitter_module = importlib.import_module('text_splitter')
TextSplitter = getattr(text_splitter_module, splitter_name)
except: ## 否则使用langchain的text_splitter
text_splitter_module = importlib.import_module('langchain.text_splitter')
TextSplitter = getattr(text_splitter_module, splitter_name)
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
try:
text_splitter = TextSplitter.from_tiktoken_encoder(
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
pipeline="zh_core_web_sm",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except:
text_splitter = TextSplitter.from_tiktoken_encoder(
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
elif text_splitter_dict[splitter_name]["source"] == "huggingface": ## 从huggingface加载
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "":
config = get_model_worker_config(llm_model)
text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \
config.get("model_path")
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2":
from transformers import GPT2TokenizerFast
from langchain.text_splitter import CharacterTextSplitter
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
else: ## 字符长度加载
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
trust_remote_code=True)
text_splitter = TextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
else:
try:
text_splitter = TextSplitter(
pipeline="zh_core_web_sm",
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except:
text_splitter = TextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
except Exception as e:
print(e)
text_splitter_module = importlib.import_module('langchain.text_splitter')
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
text_splitter = TextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# If you use SpacyTextSplitter you can use GPU to do split likes Issue #1287
# text_splitter._tokenizer.max_length = 37016792
# text_splitter._tokenizer.prefer_gpu()
return text_splitter
class KnowledgeFile:
def __init__(
self,
filename: str,
knowledge_base_name: str,
loader_kwargs: Dict = {},
):
'''
对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。
'''
self.kb_name = knowledge_base_name
self.filename = str(Path(filename).as_posix())
self.ext = os.path.splitext(filename)[-1].lower()
if self.ext not in SUPPORTED_EXTS:
raise ValueError(f"暂未支持的文件格式 {self.filename}")
self.loader_kwargs = loader_kwargs
self.filepath = get_file_path(knowledge_base_name, filename)
self.docs = None
self.splited_docs = None
self.document_loader_name = get_LoaderClass(self.ext)
self.text_splitter_name = TEXT_SPLITTER_NAME
def file2docs(self, refresh: bool = False):
if self.docs is None or refresh:
logger.info(f"{self.document_loader_name} used for {self.filepath}")
loader = get_loader(loader_name=self.document_loader_name,
file_path=self.filepath,
loader_kwargs=self.loader_kwargs)
self.docs = loader.load()
return self.docs
def docs2texts(
self,
docs: List[Document] = None,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
refresh: bool = False,
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
text_splitter: TextSplitter = None,
):
docs = docs or self.file2docs(refresh=refresh)
if not docs:
return []
if self.ext not in [".csv"]:
if text_splitter is None:
text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size,
chunk_overlap=chunk_overlap)
if self.text_splitter_name == "MarkdownHeaderTextSplitter":
docs = text_splitter.split_text(docs[0].page_content)
else:
docs = text_splitter.split_documents(docs)
if not docs:
return []
print(f"文档切分示例:{docs[0]}")
if zh_title_enhance:
docs = func_zh_title_enhance(docs)
self.splited_docs = docs
return self.splited_docs
def file2text(
self,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
refresh: bool = False,
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
text_splitter: TextSplitter = None,
):
if self.splited_docs is None or refresh:
docs = self.file2docs()
self.splited_docs = self.docs2texts(docs=docs,
zh_title_enhance=zh_title_enhance,
refresh=refresh,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
text_splitter=text_splitter)
return self.splited_docs
def file_exist(self):
return os.path.isfile(self.filepath)
def get_mtime(self):
return os.path.getmtime(self.filepath)
def get_size(self):
return os.path.getsize(self.filepath)
def files2docs_in_thread(
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
chunk_size: int = CHUNK_SIZE,
chunk_overlap: int = OVERLAP_SIZE,
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
) -> Generator:
'''
利用多线程批量将磁盘文件转化成langchain Document.
如果传入参数是Tuple,形式为(filename, kb_name)
生成器返回值为 status, (kb_name, file_name, docs | error)
'''
def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]:
try:
return True, (file.kb_name, file.filename, file.file2text(**kwargs))
except Exception as e:
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
return False, (file.kb_name, file.filename, msg)
kwargs_list = []
for i, file in enumerate(files):
kwargs = {}
try:
if isinstance(file, tuple) and len(file) >= 2:
filename = file[0]
kb_name = file[1]
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
elif isinstance(file, dict):
filename = file.pop("filename")
kb_name = file.pop("kb_name")
kwargs.update(file)
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
kwargs["file"] = file
kwargs["chunk_size"] = chunk_size
kwargs["chunk_overlap"] = chunk_overlap
kwargs["zh_title_enhance"] = zh_title_enhance
kwargs_list.append(kwargs)
except Exception as e:
yield False, (kb_name, filename, str(e))
for result in run_in_thread_pool(func=file2docs, params=kwargs_list):
yield result
if __name__ == "__main__":
from pprint import pprint
kb_file = KnowledgeFile(
filename="/home/congyin/Code/Project_Langchain_0814/Langchain-Chatchat/knowledge_base/csv1/content/gm.csv",
knowledge_base_name="samples")
# kb_file.text_splitter_name = "RecursiveCharacterTextSplitter"
docs = kb_file.file2docs()
# pprint(docs[-1])
|