Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,416 Bytes
a667f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
import matplotlib.pyplot as plt
import torch
import cv2
import numpy as np
from matplotlib.colors import hsv_to_rgb
import torch.nn.functional as tf
from PIL import Image
from os.path import *
from io import BytesIO
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
TAG_CHAR = np.array([202021.25], np.float32)
def load_flow(path):
# if path.endswith('.png'):
# # for KITTI which uses 16bit PNG images
# # see 'https://github.com/ClementPinard/FlowNetPytorch/blob/master/datasets/KITTI.py'
# # The -1 is here to specify not to change the image depth (16bit), and is compatible
# # with both OpenCV2 and OpenCV3
# flo_file = cv2.imread(path, -1)
# flo_img = flo_file[:, :, 2:0:-1].astype(np.float32)
# invalid = (flo_file[:, :, 0] == 0) # mask
# flo_img = flo_img - 32768
# flo_img = flo_img / 64
# flo_img[np.abs(flo_img) < 1e-10] = 1e-10
# flo_img[invalid, :] = 0
# return flo_img
if path.endswith('.png'):
# this method is only for the flow data generated by self-rendering
# read json file and get "forward" and "backward" flow
import json
path_range = path.replace(path.name, 'data_ranges.json')
with open(path_range, 'r') as f:
flow_dict = json.load(f)
flow_forward = flow_dict['forward_flow']
# get the max and min value of the flow
max_value = float(flow_forward["max"])
min_value = float(flow_forward["min"])
# read the flow data
flow_file = cv2.imread(path, -1).astype(np.float32)
# scale the flow data
flow_file = flow_file * (max_value - min_value) / 65535 + min_value
# only keep the last two channels
flow_file = flow_file[:, :, 1:]
return flow_file
# scaling = {"min": min_value.item(), "max": max_value.item()}
# data = (data - min_value) * 65535 / (max_value - min_value)
# data = data.astype(np.uint16)
elif path.endswith('.flo'):
with open(path, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
assert (202021.25 == magic), 'Magic number incorrect. Invalid .flo file'
h = np.fromfile(f, np.int32, count=1)[0]
w = np.fromfile(f, np.int32, count=1)[0]
data = np.fromfile(f, np.float32, count=2 * w * h)
# Reshape data into 3D array (columns, rows, bands)
data2D = np.resize(data, (w, h, 2))
return data2D
elif path.endswith('.pfm'):
file = open(path, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data).astype(np.float32)
if len(data.shape) == 2:
return data
else:
return data[:, :, :-1]
elif path.endswith('.bin') or path.endswith('.raw'):
return np.load(path)
else:
raise NotImplementedError("flow type")
def make_colorwheel():
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
Code follows the original C++ source code of Daniel Scharstein.
Code follows the the Matlab source code of Deqing Sun.
Returns:
np.ndarray: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
col = col + RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
colorwheel[col:col + YG, 1] = 255
col = col + YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
col = col + GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
colorwheel[col:col + CB, 2] = 255
col = col + CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
col = col + BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
colorwheel[col:col + MR, 0] = 255
return colorwheel
def flow_uv_to_colors(u, v, convert_to_bgr=False):
"""
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
Args:
u (np.ndarray): Input horizontal flow of shape [H,W]
v (np.ndarray): Input vertical flow of shape [H,W]
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
colorwheel = make_colorwheel() # shape [55x3]
ncols = colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u) / np.pi
fk = (a + 1) / 2 * (ncols - 1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1 - f) * col0 + f * col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1 - col[idx])
col[~idx] = col[~idx] * 0.75 # out of range
# Note the 2-i => BGR instead of RGB
ch_idx = 2 - i if convert_to_bgr else i
flow_image[:, :, ch_idx] = np.floor(255 * col)
return flow_image
# absolut color flow
def flow_to_image(flow, max_flow=256):
if max_flow is not None:
max_flow = max(max_flow, 1.)
else:
max_flow = np.max(flow)
n = 8
u, v = flow[:, :, 0], flow[:, :, 1]
mag = np.sqrt(np.square(u) + np.square(v))
angle = np.arctan2(v, u)
im_h = np.mod(angle / (2 * np.pi) + 1, 1)
im_s = np.clip(mag * n / max_flow, a_min=0, a_max=1)
im_v = np.clip(n - im_s, a_min=0, a_max=1)
im = hsv_to_rgb(np.stack([im_h, im_s, im_v], 2))
return (im * 255).astype(np.uint8)
# relative color
def flow_to_image_relative(flow_uv, clip_flow=None, convert_to_bgr=False):
"""
Expects a two dimensional flow image of shape.
Args:
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
Returns:
np.ndarray: Flow visualization image of shape [H,W,3]
"""
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:, :, 0]
v = flow_uv[:, :, 1]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
return flow_uv_to_colors(u, v, convert_to_bgr)
def resize_flow(flow, new_shape):
_, _, h, w = flow.shape
new_h, new_w = new_shape
flow = torch.nn.functional.interpolate(flow, (new_h, new_w),
mode='bilinear', align_corners=True)
scale_h, scale_w = h / float(new_h), w / float(new_w)
flow[:, 0] /= scale_w
flow[:, 1] /= scale_h
return flow
def evaluate_flow_api(gt_flows, pred_flows):
if len(gt_flows.shape) == 3:
gt_flows = gt_flows.unsqueeze(0)
if len(pred_flows.shape) == 3:
pred_flows = pred_flows.unsqueeze(0)
pred_flows = pred_flows.detach().cpu().numpy().transpose([0, 2, 3, 1])
gt_flows = gt_flows.detach().cpu().numpy().transpose([0, 2, 3, 1])
return evaluate_flow(gt_flows, pred_flows)
def evaluate_flow(gt_flows, pred_flows, moving_masks=None):
# credit "undepthflow/eval/evaluate_flow.py"
def calculate_error_rate(epe_map, gt_flow, mask):
bad_pixels = np.logical_and(
epe_map * mask > 3,
epe_map * mask / np.maximum(
np.sqrt(np.sum(np.square(gt_flow), axis=2)), 1e-10) > 0.05)
return bad_pixels.sum() / mask.sum() * 100.
error, error_noc, error_occ, error_move, error_static, error_rate = \
0.0, 0.0, 0.0, 0.0, 0.0, 0.0
error_move_rate, error_static_rate = 0.0, 0.0
B = len(gt_flows)
for gt_flow, pred_flow, i in zip(gt_flows, pred_flows, range(B)):
H, W = gt_flow.shape[:2]
h, w = pred_flow.shape[:2]
pred_flow = np.copy(pred_flow)
pred_flow[:, :, 0] = pred_flow[:, :, 0] / w * W
pred_flow[:, :, 1] = pred_flow[:, :, 1] / h * H
flo_pred = cv2.resize(pred_flow, (W, H), interpolation=cv2.INTER_LINEAR)
epe_map = np.sqrt(
np.sum(np.square(flo_pred[:, :, :2] - gt_flow[:, :, :2]),
axis=2))
if gt_flow.shape[-1] == 2:
error += np.mean(epe_map)
elif gt_flow.shape[-1] == 4:
error += np.sum(epe_map * gt_flow[:, :, 2]) / np.sum(gt_flow[:, :, 2])
noc_mask = gt_flow[:, :, -1]
error_noc += np.sum(epe_map * noc_mask) / np.sum(noc_mask)
error_occ += np.sum(epe_map * (gt_flow[:, :, 2] - noc_mask)) / max(
np.sum(gt_flow[:, :, 2] - noc_mask), 1.0)
error_rate += calculate_error_rate(epe_map, gt_flow[:, :, 0:2],
gt_flow[:, :, 2])
if moving_masks is not None:
move_mask = moving_masks[i]
error_move_rate += calculate_error_rate(
epe_map, gt_flow[:, :, 0:2], gt_flow[:, :, 2] * move_mask)
error_static_rate += calculate_error_rate(
epe_map, gt_flow[:, :, 0:2],
gt_flow[:, :, 2] * (1.0 - move_mask))
error_move += np.sum(epe_map * gt_flow[:, :, 2] *
move_mask) / np.sum(gt_flow[:, :, 2] *
move_mask)
error_static += np.sum(epe_map * gt_flow[:, :, 2] * (
1.0 - move_mask)) / np.sum(gt_flow[:, :, 2] *
(1.0 - move_mask))
if gt_flows[0].shape[-1] == 4:
res = [error / B, error_noc / B, error_occ / B, error_rate / B]
if moving_masks is not None:
res += [error_move / B, error_static / B]
return res
else:
return [error / B]
class InputPadder:
""" Pads images such that dimensions are divisible by 32 """
def __init__(self, dims, mode='sintel'):
self.ht, self.wd = dims[-2:]
pad_ht = (((self.ht // 16) + 1) * 16 - self.ht) % 16
pad_wd = (((self.wd // 16) + 1) * 16 - self.wd) % 16
if mode == 'sintel':
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2]
else:
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht]
def pad(self, inputs):
return [tf.pad(x, self._pad, mode='replicate') for x in inputs]
def unpad(self, x):
ht, wd = x.shape[-2:]
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
return x[..., c[0]:c[1], c[2]:c[3]]
class ImageInputZoomer:
""" Pads images such that dimensions are divisible by 32 """
def __init__(self, dims, factor=32):
self.ht, self.wd = dims[-2:]
hf = self.ht % factor
wf = self.wd % factor
pad_ht = (self.ht // factor + 1) * factor if hf > (factor / 2) else (self.ht // factor) * factor
pad_wd = (self.wd // factor + 1) * factor if wf > (factor / 2) else (self.wd // factor) * factor
self.size = [pad_wd, pad_ht]
def zoom(self, inputs):
return [
torch.from_numpy(cv2.resize(x.cpu().numpy().transpose(1, 2, 0), dsize=self.size,
interpolation=cv2.INTER_CUBIC).transpose(2, 0, 1)) for x in inputs]
def unzoom(self, inputs):
return [cv2.resize(x.cpu().squeeze().numpy().transpose(1, 2, 0), dsize=(self.wd, self.ht),
interpolation=cv2.INTER_CUBIC) for x in inputs]
def readFlow(fn):
""" Read .flo file in Middlebury format"""
# Code adapted from:
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
# print 'fn = %s'%(fn)
with open(fn, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print('Magic number incorrect. Invalid .flo file')
return None
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
# print 'Reading %d x %d flo file\n' % (w, h)
data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
# Reshape data into 3D array (columns, rows, bands)
# The reshape here is for visualization, the original code is (w,h,2)
return np.resize(data, (int(h), int(w), 2))
import re
def readPFM(file):
file = open(file, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b'PF':
color = True
elif header == b'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data
def writeFlow(filename, uv, v=None):
""" Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert (uv.ndim == 3)
assert (uv.shape[2] == 2)
u = uv[:, :, 0]
v = uv[:, :, 1]
else:
u = uv
assert (u.shape == v.shape)
height, width = u.shape
f = open(filename, 'wb')
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width * nBands))
tmp[:, np.arange(width) * 2] = u
tmp[:, np.arange(width) * 2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def readFlowKITTI(filename):
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
flow = flow[:, :, ::-1].astype(np.float32)
flow, valid = flow[:, :, :2], flow[:, :, 2]
flow = (flow - 2 ** 15) / 64.0
return flow, valid
def readDispKITTI(filename):
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
valid = disp > 0.0
flow = np.stack([-disp, np.zeros_like(disp)], -1)
return flow, valid
def writeFlowKITTI(filename, uv):
uv = 64.0 * uv + 2 ** 15
valid = np.ones([uv.shape[0], uv.shape[1], 1])
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
cv2.imwrite(filename, uv[..., ::-1])
def read_gen(file_name, pil=False):
ext = splitext(file_name)[-1]
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
return Image.open(file_name)
elif ext == '.bin' or ext == '.raw':
return np.load(file_name)
elif ext == '.flo':
return readFlow(file_name).astype(np.float32)
elif ext == '.pfm':
flow = readPFM(file_name).astype(np.float32)
if len(flow.shape) == 2:
return flow
else:
return flow[:, :, :-1]
return []
def flow_error_image_np(flow_pred, flow_gt, mask_occ, mask_noc=None, log_colors=True):
"""Visualize the error between two flows as 3-channel color image.
Adapted from the KITTI C++ devkit.
Args:
flow_pred: prediction flow of shape [ height, width, 2].
flow_gt: ground truth
mask_occ: flow validity mask of shape [num_batch, height, width, 1].
Equals 1 at (occluded and non-occluded) valid pixels.
mask_noc: Is 1 only at valid pixels which are not occluded.
"""
# mask_noc = tf.ones(tf.shape(mask_occ)) if mask_noc is None else mask_noc
mask_noc = np.ones(mask_occ.shape) if mask_noc is None else mask_noc
diff_sq = (flow_pred - flow_gt) ** 2
# diff = tf.sqrt(tf.reduce_sum(diff_sq, [3], keep_dims=True))
diff = np.sqrt(np.sum(diff_sq, axis=2, keepdims=True))
if log_colors:
height, width, _ = flow_pred.shape
# num_batch, height, width, _ = tf.unstack(tf.shape(flow_1))
colormap = [
[0, 0.0625, 49, 54, 149],
[0.0625, 0.125, 69, 117, 180],
[0.125, 0.25, 116, 173, 209],
[0.25, 0.5, 171, 217, 233],
[0.5, 1, 224, 243, 248],
[1, 2, 254, 224, 144],
[2, 4, 253, 174, 97],
[4, 8, 244, 109, 67],
[8, 16, 215, 48, 39],
[16, 1000000000.0, 165, 0, 38]]
colormap = np.asarray(colormap, dtype=np.float32)
colormap[:, 2:5] = colormap[:, 2:5] / 255
# mag = tf.sqrt(tf.reduce_sum(tf.square(flow_2), 3, keep_dims=True))
tempp = np.square(flow_gt)
# temp = np.sum(tempp, axis=2, keep_dims=True)
# mag = np.sqrt(temp)
mag = np.sqrt(np.sum(tempp, axis=2, keepdims=True))
# error = tf.minimum(diff / 3, 20 * diff / mag)
error = np.minimum(diff / 3, 20 * diff / (mag + 1e-7))
im = np.zeros([height, width, 3])
for i in range(colormap.shape[0]):
colors = colormap[i, :]
cond = np.logical_and(np.greater_equal(error, colors[0]), np.less(error, colors[1]))
# temp=np.tile(cond, [1, 1, 3])
im = np.where(np.tile(cond, [1, 1, 3]), np.ones([height, width, 1]) * colors[2:5], im)
# temp=np.cast(mask_noc, np.bool)
# im = np.where(np.tile(np.cast(mask_noc, np.bool), [1, 1, 3]), im, im * 0.5)
im = np.where(np.tile(mask_noc == 1, [1, 1, 3]), im, im * 0.5)
im = im * mask_occ
else:
error = (np.minimum(diff, 5) / 5) * mask_occ
im_r = error # errors in occluded areas will be red
im_g = error * mask_noc
im_b = error * mask_noc
im = np.concatenate([im_r, im_g, im_b], axis=2)
# im = np.concatenate(axis=2, values=[im_r, im_g, im_b])
return im[:, :, ::-1]
def viz_img_seq(img_list=[], flow_list=[], batch_index=0, if_debug=True):
'''visulize image sequence from cuda'''
if if_debug:
assert len(img_list) != 0
if len(img_list[0].shape) == 3:
img_list = [np.expand_dims(img, axis=0) for img in img_list]
elif img_list[0].shape[1] == 1:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
img_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in img_list]
elif img_list[0].shape[1] == 2:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
img_list = [flow_to_image_relative(flo) / 255.0 for flo in img_list]
else:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
if len(flow_list) == 0:
flow_list = [np.zeros_like(img) for img in img_list]
elif len(flow_list[0].shape) == 3:
flow_list = [np.expand_dims(img, axis=0) for img in flow_list]
elif flow_list[0].shape[1] == 1:
flow_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
flow_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in flow_list]
elif flow_list[0].shape[1] == 2:
flow_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
flow_list = [flow_to_image_relative(flo) / 255.0 for flo in flow_list]
else:
flow_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
if img_list[0].max() > 10:
img_list = [img / 255.0 for img in img_list]
if flow_list[0].max() > 10:
flow_list = [img / 255.0 for img in flow_list]
while len(img_list) > len(flow_list):
flow_list.append(np.zeros_like(flow_list[-1]))
while len(flow_list) > len(img_list):
img_list.append(np.zeros_like(img_list[-1]))
img_flo = np.concatenate([flow_list[0], img_list[0]], axis=0)
# map flow to rgb image
for i in range(1, len(img_list)):
temp = np.concatenate([flow_list[i], img_list[i]], axis=0)
img_flo = np.concatenate([img_flo, temp], axis=1)
cv2.imshow('image', img_flo[:, :, [2, 1, 0]])
cv2.waitKey()
else:
return
def plt_show_img_flow(img_list=[], flow_list=[], batch_index=0):
assert len(img_list) != 0
if len(img_list[0].shape) == 3:
img_list = [np.expand_dims(img, axis=0) for img in img_list]
elif img_list[0].shape[1] == 1:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
img_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in img_list]
elif img_list[0].shape[1] == 2:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
img_list = [flow_to_image_relative(flo) / 255.0 for flo in img_list]
else:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
assert flow_list[0].shape[1] == 2
flow_vec = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
flow_list = [flow_to_image_relative(flo) / 255.0 for flo in flow_vec]
col = len(flow_list) // 2
fig = plt.figure(figsize=(10, 8))
for i in range(len(flow_list)):
ax1 = fig.add_subplot(2, col, i + 1)
plot_quiver(ax1, flow=flow_vec[i], mask=flow_list[i], spacing=(30 * flow_list[i].shape[0]) // 512)
if i == len(flow_list) - 1:
plt.title("Final Flow Result")
else:
plt.title("Flow from decoder (Layer %d)" % i)
plt.xticks([])
plt.yticks([])
plt.tight_layout()
# save image to buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# convert buffer to image
img = Image.open(buf)
# convert image to numpy array
img = np.asarray(img)
return img
def plt_attention(attention, h, w):
col = len(attention) // 2
fig = plt.figure(figsize=(10, 5))
for i in range(len(attention)):
viz = attention[i][0, :, :, h, w].detach().cpu().numpy()
# viz = viz[7:-7, 7:-7]
if i == 0:
viz_all = viz
else:
viz_all = viz_all + viz
ax1 = fig.add_subplot(2, col + 1, i + 1)
img = ax1.imshow(viz, cmap="rainbow", interpolation="bilinear")
plt.colorbar(img, ax=ax1)
ax1.scatter(h, w, color='red')
plt.title("Attention of Iteration %d" % (i + 1))
ax1 = fig.add_subplot(2, col + 1, 2 * (col + 1))
img = ax1.imshow(viz_all, cmap="rainbow", interpolation="bilinear")
plt.colorbar(img, ax=ax1)
ax1.scatter(h, w, color='red')
plt.title("Mean Attention")
plt.show()
def plot_quiver(ax, flow, spacing, mask=None, show_win=None, margin=0, **kwargs):
"""Plots less dense quiver field.
Args:
ax: Matplotlib axis
flow: motion vectors
spacing: space (px) between each arrow in grid
margin: width (px) of enclosing region without arrows
kwargs: quiver kwargs (default: angles="xy", scale_units="xy")
"""
h, w, *_ = flow.shape
spacing = 50
if show_win is None:
nx = int((w - 2 * margin) / spacing)
ny = int((h - 2 * margin) / spacing)
x = np.linspace(margin, w - margin - 1, nx, dtype=np.int64)
y = np.linspace(margin, h - margin - 1, ny, dtype=np.int64)
else:
h0, h1, w0, w1 = *show_win,
h0 = int(h0 * h)
h1 = int(h1 * h)
w0 = int(w0 * w)
w1 = int(w1 * w)
num_h = (h1 - h0) // spacing
num_w = (w1 - w0) // spacing
y = np.linspace(h0, h1, num_h, dtype=np.int64)
x = np.linspace(w0, w1, num_w, dtype=np.int64)
flow = flow[np.ix_(y, x)]
u = flow[:, :, 0]
v = flow[:, :, 1] * -1 # ----------
kwargs = {**dict(angles="xy", scale_units="xy"), **kwargs}
if mask is not None:
ax.imshow(mask)
# ax.quiver(x, y, u, v, color="black", scale=10, width=0.010, headwidth=5, minlength=0.5) # bigger is short
ax.quiver(x, y, u, v, color="black") # bigger is short
x_gird, y_gird = np.meshgrid(x, y)
ax.scatter(x_gird, y_gird, c="black", s=(h + w) // 50)
ax.scatter(x_gird, y_gird, c="black", s=(h + w) // 100)
ax.set_ylim(sorted(ax.get_ylim(), reverse=True))
ax.set_aspect("equal")
def save_img_seq(img_list, batch_index=0, name='img', if_debug=False):
if if_debug:
temp = img_list[0]
size = temp.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(name + '_flow.mp4', fourcc, 22, (size[-1], size[-2]))
if img_list[0].shape[1] == 2:
image_list = []
flow_vec = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
flow_viz = [flow_to_image_relative(flo) for flo in flow_vec]
# for index, img in enumerate(flow_viz):
# image_list.append(viz(flow_viz[index], flow_vec[index], flow_viz[index]))
img_list = flow_viz
if img_list[0].shape[1] == 3:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() * 255.0 for img1 in img_list]
if img_list[0].shape[1] == 1:
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
img_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in img_list]
for index, img in enumerate(img_list):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
cv2.imwrite(name + '_%d.png' % index, img)
out.write(img.astype(np.uint8))
out.release()
else:
return
from io import BytesIO
def viz(flo, flow_vec,
image):
fig, axes = plt.subplots(1, 2, figsize=(10, 5), dpi=500)
ax1 = axes[0]
plot_quiver(ax1, flow=flow_vec, mask=flo, spacing=40)
ax1.set_title('flow all')
ax1 = axes[1]
ax1.imshow(image)
ax1.set_title('image')
plt.tight_layout()
# eliminate the x and y-axis
plt.axis('off')
# save figure into a buffer
buf = BytesIO()
plt.savefig(buf, format='png', dpi=200)
buf.seek(0)
# convert to numpy array
im = np.array(Image.open(buf))
buf.close()
plt.close()
return im
|