Spaces:
Running
on
Zero
Running
on
Zero
Upload flow_tools.py
Browse files- flow_tools.py +773 -0
flow_tools.py
ADDED
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from matplotlib.colors import hsv_to_rgb
|
6 |
+
import torch.nn.functional as tf
|
7 |
+
from PIL import Image
|
8 |
+
from os.path import *
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
cv2.setNumThreads(0)
|
12 |
+
cv2.ocl.setUseOpenCL(False)
|
13 |
+
TAG_CHAR = np.array([202021.25], np.float32)
|
14 |
+
|
15 |
+
|
16 |
+
def load_flow(path):
|
17 |
+
# if path.endswith('.png'):
|
18 |
+
# # for KITTI which uses 16bit PNG images
|
19 |
+
# # see 'https://github.com/ClementPinard/FlowNetPytorch/blob/master/datasets/KITTI.py'
|
20 |
+
# # The -1 is here to specify not to change the image depth (16bit), and is compatible
|
21 |
+
# # with both OpenCV2 and OpenCV3
|
22 |
+
# flo_file = cv2.imread(path, -1)
|
23 |
+
# flo_img = flo_file[:, :, 2:0:-1].astype(np.float32)
|
24 |
+
# invalid = (flo_file[:, :, 0] == 0) # mask
|
25 |
+
# flo_img = flo_img - 32768
|
26 |
+
# flo_img = flo_img / 64
|
27 |
+
# flo_img[np.abs(flo_img) < 1e-10] = 1e-10
|
28 |
+
# flo_img[invalid, :] = 0
|
29 |
+
# return flo_img
|
30 |
+
if path.endswith('.png'):
|
31 |
+
# this method is only for the flow data generated by self-rendering
|
32 |
+
# read json file and get "forward" and "backward" flow
|
33 |
+
import json
|
34 |
+
path_range = path.replace(path.name, 'data_ranges.json')
|
35 |
+
with open(path_range, 'r') as f:
|
36 |
+
flow_dict = json.load(f)
|
37 |
+
flow_forward = flow_dict['forward_flow']
|
38 |
+
# get the max and min value of the flow
|
39 |
+
max_value = float(flow_forward["max"])
|
40 |
+
min_value = float(flow_forward["min"])
|
41 |
+
# read the flow data
|
42 |
+
flow_file = cv2.imread(path, -1).astype(np.float32)
|
43 |
+
# scale the flow data
|
44 |
+
flow_file = flow_file * (max_value - min_value) / 65535 + min_value
|
45 |
+
# only keep the last two channels
|
46 |
+
flow_file = flow_file[:, :, 1:]
|
47 |
+
return flow_file
|
48 |
+
|
49 |
+
# scaling = {"min": min_value.item(), "max": max_value.item()}
|
50 |
+
# data = (data - min_value) * 65535 / (max_value - min_value)
|
51 |
+
# data = data.astype(np.uint16)
|
52 |
+
|
53 |
+
elif path.endswith('.flo'):
|
54 |
+
with open(path, 'rb') as f:
|
55 |
+
magic = np.fromfile(f, np.float32, count=1)
|
56 |
+
assert (202021.25 == magic), 'Magic number incorrect. Invalid .flo file'
|
57 |
+
h = np.fromfile(f, np.int32, count=1)[0]
|
58 |
+
w = np.fromfile(f, np.int32, count=1)[0]
|
59 |
+
data = np.fromfile(f, np.float32, count=2 * w * h)
|
60 |
+
# Reshape data into 3D array (columns, rows, bands)
|
61 |
+
data2D = np.resize(data, (w, h, 2))
|
62 |
+
return data2D
|
63 |
+
elif path.endswith('.pfm'):
|
64 |
+
file = open(path, 'rb')
|
65 |
+
|
66 |
+
color = None
|
67 |
+
width = None
|
68 |
+
height = None
|
69 |
+
scale = None
|
70 |
+
endian = None
|
71 |
+
header = file.readline().rstrip()
|
72 |
+
if header == b'PF':
|
73 |
+
color = True
|
74 |
+
elif header == b'Pf':
|
75 |
+
color = False
|
76 |
+
else:
|
77 |
+
raise Exception('Not a PFM file.')
|
78 |
+
|
79 |
+
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
|
80 |
+
if dim_match:
|
81 |
+
width, height = map(int, dim_match.groups())
|
82 |
+
else:
|
83 |
+
raise Exception('Malformed PFM header.')
|
84 |
+
|
85 |
+
scale = float(file.readline().rstrip())
|
86 |
+
if scale < 0: # little-endian
|
87 |
+
endian = '<'
|
88 |
+
scale = -scale
|
89 |
+
else:
|
90 |
+
endian = '>' # big-endian
|
91 |
+
data = np.fromfile(file, endian + 'f')
|
92 |
+
shape = (height, width, 3) if color else (height, width)
|
93 |
+
data = np.reshape(data, shape)
|
94 |
+
data = np.flipud(data).astype(np.float32)
|
95 |
+
if len(data.shape) == 2:
|
96 |
+
return data
|
97 |
+
else:
|
98 |
+
return data[:, :, :-1]
|
99 |
+
elif path.endswith('.bin') or path.endswith('.raw'):
|
100 |
+
return np.load(path)
|
101 |
+
else:
|
102 |
+
raise NotImplementedError("flow type")
|
103 |
+
|
104 |
+
|
105 |
+
def make_colorwheel():
|
106 |
+
"""
|
107 |
+
Generates a color wheel for optical flow visualization as presented in:
|
108 |
+
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
|
109 |
+
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
|
110 |
+
|
111 |
+
Code follows the original C++ source code of Daniel Scharstein.
|
112 |
+
Code follows the the Matlab source code of Deqing Sun.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
np.ndarray: Color wheel
|
116 |
+
"""
|
117 |
+
|
118 |
+
RY = 15
|
119 |
+
YG = 6
|
120 |
+
GC = 4
|
121 |
+
CB = 11
|
122 |
+
BM = 13
|
123 |
+
MR = 6
|
124 |
+
|
125 |
+
ncols = RY + YG + GC + CB + BM + MR
|
126 |
+
colorwheel = np.zeros((ncols, 3))
|
127 |
+
col = 0
|
128 |
+
|
129 |
+
# RY
|
130 |
+
colorwheel[0:RY, 0] = 255
|
131 |
+
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
|
132 |
+
col = col + RY
|
133 |
+
# YG
|
134 |
+
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
|
135 |
+
colorwheel[col:col + YG, 1] = 255
|
136 |
+
col = col + YG
|
137 |
+
# GC
|
138 |
+
colorwheel[col:col + GC, 1] = 255
|
139 |
+
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
|
140 |
+
col = col + GC
|
141 |
+
# CB
|
142 |
+
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(CB) / CB)
|
143 |
+
colorwheel[col:col + CB, 2] = 255
|
144 |
+
col = col + CB
|
145 |
+
# BM
|
146 |
+
colorwheel[col:col + BM, 2] = 255
|
147 |
+
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
|
148 |
+
col = col + BM
|
149 |
+
# MR
|
150 |
+
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(MR) / MR)
|
151 |
+
colorwheel[col:col + MR, 0] = 255
|
152 |
+
return colorwheel
|
153 |
+
|
154 |
+
|
155 |
+
def flow_uv_to_colors(u, v, convert_to_bgr=False):
|
156 |
+
"""
|
157 |
+
Applies the flow color wheel to (possibly clipped) flow components u and v.
|
158 |
+
|
159 |
+
According to the C++ source code of Daniel Scharstein
|
160 |
+
According to the Matlab source code of Deqing Sun
|
161 |
+
|
162 |
+
Args:
|
163 |
+
u (np.ndarray): Input horizontal flow of shape [H,W]
|
164 |
+
v (np.ndarray): Input vertical flow of shape [H,W]
|
165 |
+
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
np.ndarray: Flow visualization image of shape [H,W,3]
|
169 |
+
"""
|
170 |
+
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
|
171 |
+
colorwheel = make_colorwheel() # shape [55x3]
|
172 |
+
ncols = colorwheel.shape[0]
|
173 |
+
rad = np.sqrt(np.square(u) + np.square(v))
|
174 |
+
a = np.arctan2(-v, -u) / np.pi
|
175 |
+
fk = (a + 1) / 2 * (ncols - 1)
|
176 |
+
k0 = np.floor(fk).astype(np.int32)
|
177 |
+
k1 = k0 + 1
|
178 |
+
k1[k1 == ncols] = 0
|
179 |
+
f = fk - k0
|
180 |
+
for i in range(colorwheel.shape[1]):
|
181 |
+
tmp = colorwheel[:, i]
|
182 |
+
col0 = tmp[k0] / 255.0
|
183 |
+
col1 = tmp[k1] / 255.0
|
184 |
+
col = (1 - f) * col0 + f * col1
|
185 |
+
idx = (rad <= 1)
|
186 |
+
col[idx] = 1 - rad[idx] * (1 - col[idx])
|
187 |
+
col[~idx] = col[~idx] * 0.75 # out of range
|
188 |
+
# Note the 2-i => BGR instead of RGB
|
189 |
+
ch_idx = 2 - i if convert_to_bgr else i
|
190 |
+
flow_image[:, :, ch_idx] = np.floor(255 * col)
|
191 |
+
return flow_image
|
192 |
+
|
193 |
+
|
194 |
+
# absolut color flow
|
195 |
+
def flow_to_image(flow, max_flow=256):
|
196 |
+
if max_flow is not None:
|
197 |
+
max_flow = max(max_flow, 1.)
|
198 |
+
else:
|
199 |
+
max_flow = np.max(flow)
|
200 |
+
|
201 |
+
n = 8
|
202 |
+
u, v = flow[:, :, 0], flow[:, :, 1]
|
203 |
+
mag = np.sqrt(np.square(u) + np.square(v))
|
204 |
+
angle = np.arctan2(v, u)
|
205 |
+
im_h = np.mod(angle / (2 * np.pi) + 1, 1)
|
206 |
+
im_s = np.clip(mag * n / max_flow, a_min=0, a_max=1)
|
207 |
+
im_v = np.clip(n - im_s, a_min=0, a_max=1)
|
208 |
+
im = hsv_to_rgb(np.stack([im_h, im_s, im_v], 2))
|
209 |
+
return (im * 255).astype(np.uint8)
|
210 |
+
|
211 |
+
|
212 |
+
# relative color
|
213 |
+
def flow_to_image_relative(flow_uv, clip_flow=None, convert_to_bgr=False):
|
214 |
+
"""
|
215 |
+
Expects a two dimensional flow image of shape.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
|
219 |
+
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
|
220 |
+
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
|
221 |
+
|
222 |
+
Returns:
|
223 |
+
np.ndarray: Flow visualization image of shape [H,W,3]
|
224 |
+
"""
|
225 |
+
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
|
226 |
+
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
|
227 |
+
if clip_flow is not None:
|
228 |
+
flow_uv = np.clip(flow_uv, 0, clip_flow)
|
229 |
+
u = flow_uv[:, :, 0]
|
230 |
+
v = flow_uv[:, :, 1]
|
231 |
+
rad = np.sqrt(np.square(u) + np.square(v))
|
232 |
+
rad_max = np.max(rad)
|
233 |
+
epsilon = 1e-5
|
234 |
+
u = u / (rad_max + epsilon)
|
235 |
+
v = v / (rad_max + epsilon)
|
236 |
+
return flow_uv_to_colors(u, v, convert_to_bgr)
|
237 |
+
|
238 |
+
|
239 |
+
def resize_flow(flow, new_shape):
|
240 |
+
_, _, h, w = flow.shape
|
241 |
+
new_h, new_w = new_shape
|
242 |
+
flow = torch.nn.functional.interpolate(flow, (new_h, new_w),
|
243 |
+
mode='bilinear', align_corners=True)
|
244 |
+
scale_h, scale_w = h / float(new_h), w / float(new_w)
|
245 |
+
flow[:, 0] /= scale_w
|
246 |
+
flow[:, 1] /= scale_h
|
247 |
+
return flow
|
248 |
+
|
249 |
+
|
250 |
+
def evaluate_flow_api(gt_flows, pred_flows):
|
251 |
+
if len(gt_flows.shape) == 3:
|
252 |
+
gt_flows = gt_flows.unsqueeze(0)
|
253 |
+
if len(pred_flows.shape) == 3:
|
254 |
+
pred_flows = pred_flows.unsqueeze(0)
|
255 |
+
pred_flows = pred_flows.detach().cpu().numpy().transpose([0, 2, 3, 1])
|
256 |
+
gt_flows = gt_flows.detach().cpu().numpy().transpose([0, 2, 3, 1])
|
257 |
+
return evaluate_flow(gt_flows, pred_flows)
|
258 |
+
|
259 |
+
|
260 |
+
def evaluate_flow(gt_flows, pred_flows, moving_masks=None):
|
261 |
+
# credit "undepthflow/eval/evaluate_flow.py"
|
262 |
+
def calculate_error_rate(epe_map, gt_flow, mask):
|
263 |
+
bad_pixels = np.logical_and(
|
264 |
+
epe_map * mask > 3,
|
265 |
+
epe_map * mask / np.maximum(
|
266 |
+
np.sqrt(np.sum(np.square(gt_flow), axis=2)), 1e-10) > 0.05)
|
267 |
+
return bad_pixels.sum() / mask.sum() * 100.
|
268 |
+
|
269 |
+
error, error_noc, error_occ, error_move, error_static, error_rate = \
|
270 |
+
0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
271 |
+
error_move_rate, error_static_rate = 0.0, 0.0
|
272 |
+
B = len(gt_flows)
|
273 |
+
for gt_flow, pred_flow, i in zip(gt_flows, pred_flows, range(B)):
|
274 |
+
H, W = gt_flow.shape[:2]
|
275 |
+
|
276 |
+
h, w = pred_flow.shape[:2]
|
277 |
+
pred_flow = np.copy(pred_flow)
|
278 |
+
pred_flow[:, :, 0] = pred_flow[:, :, 0] / w * W
|
279 |
+
pred_flow[:, :, 1] = pred_flow[:, :, 1] / h * H
|
280 |
+
|
281 |
+
flo_pred = cv2.resize(pred_flow, (W, H), interpolation=cv2.INTER_LINEAR)
|
282 |
+
|
283 |
+
epe_map = np.sqrt(
|
284 |
+
np.sum(np.square(flo_pred[:, :, :2] - gt_flow[:, :, :2]),
|
285 |
+
axis=2))
|
286 |
+
if gt_flow.shape[-1] == 2:
|
287 |
+
error += np.mean(epe_map)
|
288 |
+
|
289 |
+
elif gt_flow.shape[-1] == 4:
|
290 |
+
error += np.sum(epe_map * gt_flow[:, :, 2]) / np.sum(gt_flow[:, :, 2])
|
291 |
+
noc_mask = gt_flow[:, :, -1]
|
292 |
+
error_noc += np.sum(epe_map * noc_mask) / np.sum(noc_mask)
|
293 |
+
|
294 |
+
error_occ += np.sum(epe_map * (gt_flow[:, :, 2] - noc_mask)) / max(
|
295 |
+
np.sum(gt_flow[:, :, 2] - noc_mask), 1.0)
|
296 |
+
|
297 |
+
error_rate += calculate_error_rate(epe_map, gt_flow[:, :, 0:2],
|
298 |
+
gt_flow[:, :, 2])
|
299 |
+
|
300 |
+
if moving_masks is not None:
|
301 |
+
move_mask = moving_masks[i]
|
302 |
+
|
303 |
+
error_move_rate += calculate_error_rate(
|
304 |
+
epe_map, gt_flow[:, :, 0:2], gt_flow[:, :, 2] * move_mask)
|
305 |
+
error_static_rate += calculate_error_rate(
|
306 |
+
epe_map, gt_flow[:, :, 0:2],
|
307 |
+
gt_flow[:, :, 2] * (1.0 - move_mask))
|
308 |
+
|
309 |
+
error_move += np.sum(epe_map * gt_flow[:, :, 2] *
|
310 |
+
move_mask) / np.sum(gt_flow[:, :, 2] *
|
311 |
+
move_mask)
|
312 |
+
error_static += np.sum(epe_map * gt_flow[:, :, 2] * (
|
313 |
+
1.0 - move_mask)) / np.sum(gt_flow[:, :, 2] *
|
314 |
+
(1.0 - move_mask))
|
315 |
+
|
316 |
+
if gt_flows[0].shape[-1] == 4:
|
317 |
+
res = [error / B, error_noc / B, error_occ / B, error_rate / B]
|
318 |
+
if moving_masks is not None:
|
319 |
+
res += [error_move / B, error_static / B]
|
320 |
+
return res
|
321 |
+
else:
|
322 |
+
return [error / B]
|
323 |
+
|
324 |
+
|
325 |
+
class InputPadder:
|
326 |
+
""" Pads images such that dimensions are divisible by 32 """
|
327 |
+
|
328 |
+
def __init__(self, dims, mode='sintel'):
|
329 |
+
self.ht, self.wd = dims[-2:]
|
330 |
+
pad_ht = (((self.ht // 16) + 1) * 16 - self.ht) % 16
|
331 |
+
pad_wd = (((self.wd // 16) + 1) * 16 - self.wd) % 16
|
332 |
+
if mode == 'sintel':
|
333 |
+
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2]
|
334 |
+
else:
|
335 |
+
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht]
|
336 |
+
|
337 |
+
def pad(self, inputs):
|
338 |
+
return [tf.pad(x, self._pad, mode='replicate') for x in inputs]
|
339 |
+
|
340 |
+
def unpad(self, x):
|
341 |
+
ht, wd = x.shape[-2:]
|
342 |
+
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
|
343 |
+
|
344 |
+
return x[..., c[0]:c[1], c[2]:c[3]]
|
345 |
+
|
346 |
+
|
347 |
+
class ImageInputZoomer:
|
348 |
+
""" Pads images such that dimensions are divisible by 32 """
|
349 |
+
|
350 |
+
def __init__(self, dims, factor=32):
|
351 |
+
self.ht, self.wd = dims[-2:]
|
352 |
+
hf = self.ht % factor
|
353 |
+
wf = self.wd % factor
|
354 |
+
pad_ht = (self.ht // factor + 1) * factor if hf > (factor / 2) else (self.ht // factor) * factor
|
355 |
+
pad_wd = (self.wd // factor + 1) * factor if wf > (factor / 2) else (self.wd // factor) * factor
|
356 |
+
self.size = [pad_wd, pad_ht]
|
357 |
+
|
358 |
+
def zoom(self, inputs):
|
359 |
+
return [
|
360 |
+
torch.from_numpy(cv2.resize(x.cpu().numpy().transpose(1, 2, 0), dsize=self.size,
|
361 |
+
interpolation=cv2.INTER_CUBIC).transpose(2, 0, 1)) for x in inputs]
|
362 |
+
|
363 |
+
def unzoom(self, inputs):
|
364 |
+
return [cv2.resize(x.cpu().squeeze().numpy().transpose(1, 2, 0), dsize=(self.wd, self.ht),
|
365 |
+
interpolation=cv2.INTER_CUBIC) for x in inputs]
|
366 |
+
|
367 |
+
|
368 |
+
def readFlow(fn):
|
369 |
+
""" Read .flo file in Middlebury format"""
|
370 |
+
# Code adapted from:
|
371 |
+
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
|
372 |
+
|
373 |
+
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
|
374 |
+
# print 'fn = %s'%(fn)
|
375 |
+
with open(fn, 'rb') as f:
|
376 |
+
magic = np.fromfile(f, np.float32, count=1)
|
377 |
+
if 202021.25 != magic:
|
378 |
+
print('Magic number incorrect. Invalid .flo file')
|
379 |
+
return None
|
380 |
+
else:
|
381 |
+
w = np.fromfile(f, np.int32, count=1)
|
382 |
+
h = np.fromfile(f, np.int32, count=1)
|
383 |
+
# print 'Reading %d x %d flo file\n' % (w, h)
|
384 |
+
data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
|
385 |
+
# Reshape data into 3D array (columns, rows, bands)
|
386 |
+
# The reshape here is for visualization, the original code is (w,h,2)
|
387 |
+
return np.resize(data, (int(h), int(w), 2))
|
388 |
+
|
389 |
+
|
390 |
+
import re
|
391 |
+
|
392 |
+
|
393 |
+
def readPFM(file):
|
394 |
+
file = open(file, 'rb')
|
395 |
+
|
396 |
+
color = None
|
397 |
+
width = None
|
398 |
+
height = None
|
399 |
+
scale = None
|
400 |
+
endian = None
|
401 |
+
|
402 |
+
header = file.readline().rstrip()
|
403 |
+
if header == b'PF':
|
404 |
+
color = True
|
405 |
+
elif header == b'Pf':
|
406 |
+
color = False
|
407 |
+
else:
|
408 |
+
raise Exception('Not a PFM file.')
|
409 |
+
|
410 |
+
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
|
411 |
+
if dim_match:
|
412 |
+
width, height = map(int, dim_match.groups())
|
413 |
+
else:
|
414 |
+
raise Exception('Malformed PFM header.')
|
415 |
+
|
416 |
+
scale = float(file.readline().rstrip())
|
417 |
+
if scale < 0: # little-endian
|
418 |
+
endian = '<'
|
419 |
+
scale = -scale
|
420 |
+
else:
|
421 |
+
endian = '>' # big-endian
|
422 |
+
|
423 |
+
data = np.fromfile(file, endian + 'f')
|
424 |
+
shape = (height, width, 3) if color else (height, width)
|
425 |
+
|
426 |
+
data = np.reshape(data, shape)
|
427 |
+
data = np.flipud(data)
|
428 |
+
return data
|
429 |
+
|
430 |
+
|
431 |
+
def writeFlow(filename, uv, v=None):
|
432 |
+
""" Write optical flow to file.
|
433 |
+
|
434 |
+
If v is None, uv is assumed to contain both u and v channels,
|
435 |
+
stacked in depth.
|
436 |
+
Original code by Deqing Sun, adapted from Daniel Scharstein.
|
437 |
+
"""
|
438 |
+
nBands = 2
|
439 |
+
|
440 |
+
if v is None:
|
441 |
+
assert (uv.ndim == 3)
|
442 |
+
assert (uv.shape[2] == 2)
|
443 |
+
u = uv[:, :, 0]
|
444 |
+
v = uv[:, :, 1]
|
445 |
+
else:
|
446 |
+
u = uv
|
447 |
+
|
448 |
+
assert (u.shape == v.shape)
|
449 |
+
height, width = u.shape
|
450 |
+
f = open(filename, 'wb')
|
451 |
+
# write the header
|
452 |
+
f.write(TAG_CHAR)
|
453 |
+
np.array(width).astype(np.int32).tofile(f)
|
454 |
+
np.array(height).astype(np.int32).tofile(f)
|
455 |
+
# arrange into matrix form
|
456 |
+
tmp = np.zeros((height, width * nBands))
|
457 |
+
tmp[:, np.arange(width) * 2] = u
|
458 |
+
tmp[:, np.arange(width) * 2 + 1] = v
|
459 |
+
tmp.astype(np.float32).tofile(f)
|
460 |
+
f.close()
|
461 |
+
|
462 |
+
|
463 |
+
def readFlowKITTI(filename):
|
464 |
+
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
|
465 |
+
flow = flow[:, :, ::-1].astype(np.float32)
|
466 |
+
flow, valid = flow[:, :, :2], flow[:, :, 2]
|
467 |
+
flow = (flow - 2 ** 15) / 64.0
|
468 |
+
return flow, valid
|
469 |
+
|
470 |
+
|
471 |
+
def readDispKITTI(filename):
|
472 |
+
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
|
473 |
+
valid = disp > 0.0
|
474 |
+
flow = np.stack([-disp, np.zeros_like(disp)], -1)
|
475 |
+
return flow, valid
|
476 |
+
|
477 |
+
|
478 |
+
def writeFlowKITTI(filename, uv):
|
479 |
+
uv = 64.0 * uv + 2 ** 15
|
480 |
+
valid = np.ones([uv.shape[0], uv.shape[1], 1])
|
481 |
+
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
|
482 |
+
cv2.imwrite(filename, uv[..., ::-1])
|
483 |
+
|
484 |
+
|
485 |
+
def read_gen(file_name, pil=False):
|
486 |
+
ext = splitext(file_name)[-1]
|
487 |
+
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
|
488 |
+
return Image.open(file_name)
|
489 |
+
elif ext == '.bin' or ext == '.raw':
|
490 |
+
return np.load(file_name)
|
491 |
+
elif ext == '.flo':
|
492 |
+
return readFlow(file_name).astype(np.float32)
|
493 |
+
elif ext == '.pfm':
|
494 |
+
flow = readPFM(file_name).astype(np.float32)
|
495 |
+
if len(flow.shape) == 2:
|
496 |
+
return flow
|
497 |
+
else:
|
498 |
+
return flow[:, :, :-1]
|
499 |
+
return []
|
500 |
+
|
501 |
+
|
502 |
+
def flow_error_image_np(flow_pred, flow_gt, mask_occ, mask_noc=None, log_colors=True):
|
503 |
+
"""Visualize the error between two flows as 3-channel color image.
|
504 |
+
Adapted from the KITTI C++ devkit.
|
505 |
+
Args:
|
506 |
+
flow_pred: prediction flow of shape [ height, width, 2].
|
507 |
+
flow_gt: ground truth
|
508 |
+
mask_occ: flow validity mask of shape [num_batch, height, width, 1].
|
509 |
+
Equals 1 at (occluded and non-occluded) valid pixels.
|
510 |
+
mask_noc: Is 1 only at valid pixels which are not occluded.
|
511 |
+
"""
|
512 |
+
# mask_noc = tf.ones(tf.shape(mask_occ)) if mask_noc is None else mask_noc
|
513 |
+
mask_noc = np.ones(mask_occ.shape) if mask_noc is None else mask_noc
|
514 |
+
diff_sq = (flow_pred - flow_gt) ** 2
|
515 |
+
# diff = tf.sqrt(tf.reduce_sum(diff_sq, [3], keep_dims=True))
|
516 |
+
diff = np.sqrt(np.sum(diff_sq, axis=2, keepdims=True))
|
517 |
+
if log_colors:
|
518 |
+
height, width, _ = flow_pred.shape
|
519 |
+
# num_batch, height, width, _ = tf.unstack(tf.shape(flow_1))
|
520 |
+
colormap = [
|
521 |
+
[0, 0.0625, 49, 54, 149],
|
522 |
+
[0.0625, 0.125, 69, 117, 180],
|
523 |
+
[0.125, 0.25, 116, 173, 209],
|
524 |
+
[0.25, 0.5, 171, 217, 233],
|
525 |
+
[0.5, 1, 224, 243, 248],
|
526 |
+
[1, 2, 254, 224, 144],
|
527 |
+
[2, 4, 253, 174, 97],
|
528 |
+
[4, 8, 244, 109, 67],
|
529 |
+
[8, 16, 215, 48, 39],
|
530 |
+
[16, 1000000000.0, 165, 0, 38]]
|
531 |
+
colormap = np.asarray(colormap, dtype=np.float32)
|
532 |
+
colormap[:, 2:5] = colormap[:, 2:5] / 255
|
533 |
+
# mag = tf.sqrt(tf.reduce_sum(tf.square(flow_2), 3, keep_dims=True))
|
534 |
+
tempp = np.square(flow_gt)
|
535 |
+
# temp = np.sum(tempp, axis=2, keep_dims=True)
|
536 |
+
# mag = np.sqrt(temp)
|
537 |
+
mag = np.sqrt(np.sum(tempp, axis=2, keepdims=True))
|
538 |
+
# error = tf.minimum(diff / 3, 20 * diff / mag)
|
539 |
+
error = np.minimum(diff / 3, 20 * diff / (mag + 1e-7))
|
540 |
+
im = np.zeros([height, width, 3])
|
541 |
+
for i in range(colormap.shape[0]):
|
542 |
+
colors = colormap[i, :]
|
543 |
+
cond = np.logical_and(np.greater_equal(error, colors[0]), np.less(error, colors[1]))
|
544 |
+
# temp=np.tile(cond, [1, 1, 3])
|
545 |
+
im = np.where(np.tile(cond, [1, 1, 3]), np.ones([height, width, 1]) * colors[2:5], im)
|
546 |
+
# temp=np.cast(mask_noc, np.bool)
|
547 |
+
# im = np.where(np.tile(np.cast(mask_noc, np.bool), [1, 1, 3]), im, im * 0.5)
|
548 |
+
im = np.where(np.tile(mask_noc == 1, [1, 1, 3]), im, im * 0.5)
|
549 |
+
im = im * mask_occ
|
550 |
+
else:
|
551 |
+
error = (np.minimum(diff, 5) / 5) * mask_occ
|
552 |
+
im_r = error # errors in occluded areas will be red
|
553 |
+
im_g = error * mask_noc
|
554 |
+
im_b = error * mask_noc
|
555 |
+
im = np.concatenate([im_r, im_g, im_b], axis=2)
|
556 |
+
# im = np.concatenate(axis=2, values=[im_r, im_g, im_b])
|
557 |
+
return im[:, :, ::-1]
|
558 |
+
|
559 |
+
|
560 |
+
def viz_img_seq(img_list=[], flow_list=[], batch_index=0, if_debug=True):
|
561 |
+
'''visulize image sequence from cuda'''
|
562 |
+
if if_debug:
|
563 |
+
|
564 |
+
assert len(img_list) != 0
|
565 |
+
if len(img_list[0].shape) == 3:
|
566 |
+
img_list = [np.expand_dims(img, axis=0) for img in img_list]
|
567 |
+
elif img_list[0].shape[1] == 1:
|
568 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
569 |
+
img_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in img_list]
|
570 |
+
elif img_list[0].shape[1] == 2:
|
571 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
572 |
+
img_list = [flow_to_image_relative(flo) / 255.0 for flo in img_list]
|
573 |
+
else:
|
574 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
575 |
+
|
576 |
+
if len(flow_list) == 0:
|
577 |
+
flow_list = [np.zeros_like(img) for img in img_list]
|
578 |
+
elif len(flow_list[0].shape) == 3:
|
579 |
+
flow_list = [np.expand_dims(img, axis=0) for img in flow_list]
|
580 |
+
elif flow_list[0].shape[1] == 1:
|
581 |
+
flow_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
|
582 |
+
flow_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in flow_list]
|
583 |
+
elif flow_list[0].shape[1] == 2:
|
584 |
+
flow_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
|
585 |
+
flow_list = [flow_to_image_relative(flo) / 255.0 for flo in flow_list]
|
586 |
+
else:
|
587 |
+
flow_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
|
588 |
+
|
589 |
+
if img_list[0].max() > 10:
|
590 |
+
img_list = [img / 255.0 for img in img_list]
|
591 |
+
if flow_list[0].max() > 10:
|
592 |
+
flow_list = [img / 255.0 for img in flow_list]
|
593 |
+
|
594 |
+
while len(img_list) > len(flow_list):
|
595 |
+
flow_list.append(np.zeros_like(flow_list[-1]))
|
596 |
+
while len(flow_list) > len(img_list):
|
597 |
+
img_list.append(np.zeros_like(img_list[-1]))
|
598 |
+
img_flo = np.concatenate([flow_list[0], img_list[0]], axis=0)
|
599 |
+
# map flow to rgb image
|
600 |
+
for i in range(1, len(img_list)):
|
601 |
+
temp = np.concatenate([flow_list[i], img_list[i]], axis=0)
|
602 |
+
img_flo = np.concatenate([img_flo, temp], axis=1)
|
603 |
+
cv2.imshow('image', img_flo[:, :, [2, 1, 0]])
|
604 |
+
cv2.waitKey()
|
605 |
+
else:
|
606 |
+
return
|
607 |
+
|
608 |
+
|
609 |
+
def plt_show_img_flow(img_list=[], flow_list=[], batch_index=0):
|
610 |
+
assert len(img_list) != 0
|
611 |
+
if len(img_list[0].shape) == 3:
|
612 |
+
img_list = [np.expand_dims(img, axis=0) for img in img_list]
|
613 |
+
elif img_list[0].shape[1] == 1:
|
614 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
615 |
+
img_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in img_list]
|
616 |
+
elif img_list[0].shape[1] == 2:
|
617 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
618 |
+
img_list = [flow_to_image_relative(flo) / 255.0 for flo in img_list]
|
619 |
+
else:
|
620 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
621 |
+
|
622 |
+
assert flow_list[0].shape[1] == 2
|
623 |
+
flow_vec = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in flow_list]
|
624 |
+
flow_list = [flow_to_image_relative(flo) / 255.0 for flo in flow_vec]
|
625 |
+
|
626 |
+
col = len(flow_list) // 2
|
627 |
+
fig = plt.figure(figsize=(10, 8))
|
628 |
+
for i in range(len(flow_list)):
|
629 |
+
ax1 = fig.add_subplot(2, col, i + 1)
|
630 |
+
plot_quiver(ax1, flow=flow_vec[i], mask=flow_list[i], spacing=(30 * flow_list[i].shape[0]) // 512)
|
631 |
+
if i == len(flow_list) - 1:
|
632 |
+
plt.title("Final Flow Result")
|
633 |
+
else:
|
634 |
+
plt.title("Flow from decoder (Layer %d)" % i)
|
635 |
+
plt.xticks([])
|
636 |
+
plt.yticks([])
|
637 |
+
plt.tight_layout()
|
638 |
+
|
639 |
+
# save image to buffer
|
640 |
+
buf = BytesIO()
|
641 |
+
plt.savefig(buf, format='png')
|
642 |
+
buf.seek(0)
|
643 |
+
# convert buffer to image
|
644 |
+
img = Image.open(buf)
|
645 |
+
# convert image to numpy array
|
646 |
+
img = np.asarray(img)
|
647 |
+
return img
|
648 |
+
|
649 |
+
|
650 |
+
def plt_attention(attention, h, w):
|
651 |
+
col = len(attention) // 2
|
652 |
+
fig = plt.figure(figsize=(10, 5))
|
653 |
+
|
654 |
+
for i in range(len(attention)):
|
655 |
+
viz = attention[i][0, :, :, h, w].detach().cpu().numpy()
|
656 |
+
# viz = viz[7:-7, 7:-7]
|
657 |
+
if i == 0:
|
658 |
+
viz_all = viz
|
659 |
+
else:
|
660 |
+
viz_all = viz_all + viz
|
661 |
+
|
662 |
+
ax1 = fig.add_subplot(2, col + 1, i + 1)
|
663 |
+
img = ax1.imshow(viz, cmap="rainbow", interpolation="bilinear")
|
664 |
+
plt.colorbar(img, ax=ax1)
|
665 |
+
ax1.scatter(h, w, color='red')
|
666 |
+
plt.title("Attention of Iteration %d" % (i + 1))
|
667 |
+
|
668 |
+
ax1 = fig.add_subplot(2, col + 1, 2 * (col + 1))
|
669 |
+
img = ax1.imshow(viz_all, cmap="rainbow", interpolation="bilinear")
|
670 |
+
plt.colorbar(img, ax=ax1)
|
671 |
+
ax1.scatter(h, w, color='red')
|
672 |
+
plt.title("Mean Attention")
|
673 |
+
plt.show()
|
674 |
+
|
675 |
+
|
676 |
+
def plot_quiver(ax, flow, spacing, mask=None, show_win=None, margin=0, **kwargs):
|
677 |
+
"""Plots less dense quiver field.
|
678 |
+
|
679 |
+
Args:
|
680 |
+
ax: Matplotlib axis
|
681 |
+
flow: motion vectors
|
682 |
+
spacing: space (px) between each arrow in grid
|
683 |
+
margin: width (px) of enclosing region without arrows
|
684 |
+
kwargs: quiver kwargs (default: angles="xy", scale_units="xy")
|
685 |
+
"""
|
686 |
+
h, w, *_ = flow.shape
|
687 |
+
spacing = 50
|
688 |
+
if show_win is None:
|
689 |
+
nx = int((w - 2 * margin) / spacing)
|
690 |
+
ny = int((h - 2 * margin) / spacing)
|
691 |
+
x = np.linspace(margin, w - margin - 1, nx, dtype=np.int64)
|
692 |
+
y = np.linspace(margin, h - margin - 1, ny, dtype=np.int64)
|
693 |
+
else:
|
694 |
+
h0, h1, w0, w1 = *show_win,
|
695 |
+
h0 = int(h0 * h)
|
696 |
+
h1 = int(h1 * h)
|
697 |
+
w0 = int(w0 * w)
|
698 |
+
w1 = int(w1 * w)
|
699 |
+
num_h = (h1 - h0) // spacing
|
700 |
+
num_w = (w1 - w0) // spacing
|
701 |
+
y = np.linspace(h0, h1, num_h, dtype=np.int64)
|
702 |
+
x = np.linspace(w0, w1, num_w, dtype=np.int64)
|
703 |
+
|
704 |
+
flow = flow[np.ix_(y, x)]
|
705 |
+
u = flow[:, :, 0]
|
706 |
+
v = flow[:, :, 1] * -1 # ----------
|
707 |
+
|
708 |
+
kwargs = {**dict(angles="xy", scale_units="xy"), **kwargs}
|
709 |
+
if mask is not None:
|
710 |
+
ax.imshow(mask)
|
711 |
+
# ax.quiver(x, y, u, v, color="black", scale=10, width=0.010, headwidth=5, minlength=0.5) # bigger is short
|
712 |
+
ax.quiver(x, y, u, v, color="black") # bigger is short
|
713 |
+
x_gird, y_gird = np.meshgrid(x, y)
|
714 |
+
ax.scatter(x_gird, y_gird, c="black", s=(h + w) // 50)
|
715 |
+
ax.scatter(x_gird, y_gird, c="black", s=(h + w) // 100)
|
716 |
+
ax.set_ylim(sorted(ax.get_ylim(), reverse=True))
|
717 |
+
ax.set_aspect("equal")
|
718 |
+
|
719 |
+
|
720 |
+
def save_img_seq(img_list, batch_index=0, name='img', if_debug=False):
|
721 |
+
if if_debug:
|
722 |
+
temp = img_list[0]
|
723 |
+
size = temp.shape
|
724 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
725 |
+
out = cv2.VideoWriter(name + '_flow.mp4', fourcc, 22, (size[-1], size[-2]))
|
726 |
+
if img_list[0].shape[1] == 2:
|
727 |
+
image_list = []
|
728 |
+
flow_vec = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
729 |
+
flow_viz = [flow_to_image_relative(flo) for flo in flow_vec]
|
730 |
+
# for index, img in enumerate(flow_viz):
|
731 |
+
# image_list.append(viz(flow_viz[index], flow_vec[index], flow_viz[index]))
|
732 |
+
img_list = flow_viz
|
733 |
+
if img_list[0].shape[1] == 3:
|
734 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() * 255.0 for img1 in img_list]
|
735 |
+
if img_list[0].shape[1] == 1:
|
736 |
+
img_list = [img1[batch_index].detach().cpu().permute(1, 2, 0).numpy() for img1 in img_list]
|
737 |
+
img_list = [cv2.cvtColor(flo * 255, cv2.COLOR_GRAY2BGR) for flo in img_list]
|
738 |
+
|
739 |
+
for index, img in enumerate(img_list):
|
740 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
741 |
+
cv2.imwrite(name + '_%d.png' % index, img)
|
742 |
+
out.write(img.astype(np.uint8))
|
743 |
+
out.release()
|
744 |
+
else:
|
745 |
+
return
|
746 |
+
|
747 |
+
|
748 |
+
from io import BytesIO
|
749 |
+
|
750 |
+
|
751 |
+
def viz(flo, flow_vec,
|
752 |
+
image):
|
753 |
+
fig, axes = plt.subplots(1, 2, figsize=(10, 5), dpi=500)
|
754 |
+
ax1 = axes[0]
|
755 |
+
plot_quiver(ax1, flow=flow_vec, mask=flo, spacing=40)
|
756 |
+
ax1.set_title('flow all')
|
757 |
+
|
758 |
+
ax1 = axes[1]
|
759 |
+
ax1.imshow(image)
|
760 |
+
ax1.set_title('image')
|
761 |
+
|
762 |
+
plt.tight_layout()
|
763 |
+
# eliminate the x and y-axis
|
764 |
+
plt.axis('off')
|
765 |
+
# save figure into a buffer
|
766 |
+
buf = BytesIO()
|
767 |
+
plt.savefig(buf, format='png', dpi=200)
|
768 |
+
buf.seek(0)
|
769 |
+
# convert to numpy array
|
770 |
+
im = np.array(Image.open(buf))
|
771 |
+
buf.close()
|
772 |
+
plt.close()
|
773 |
+
return im
|