File size: 6,958 Bytes
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 benchmarks on all supported export formats

Format                      | `export.py --include`         | Model
---                         | ---                           | ---
PyTorch                     | -                             | yolov5s.pt
TorchScript                 | `torchscript`                 | yolov5s.torchscript
ONNX                        | `onnx`                        | yolov5s.onnx
OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
TensorRT                    | `engine`                      | yolov5s.engine
CoreML                      | `coreml`                      | yolov5s.mlmodel
TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
TensorFlow GraphDef         | `pb`                          | yolov5s.pb
TensorFlow Lite             | `tflite`                      | yolov5s.tflite
TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
TensorFlow.js               | `tfjs`                        | yolov5s_web_model/

Requirements:
    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
    $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com  # TensorRT

Usage:
    $ python utils/benchmarks.py --weights yolov5s.pt --img 640
"""

import argparse
import platform
import sys
import time
from pathlib import Path

import pandas as pd

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd())  # relative

import export
import val
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device


def run(
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=640,  # inference size (pixels)
        batch_size=1,  # batch size
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        half=False,  # use FP16 half-precision inference
        test=False,  # test exports only
        pt_only=False,  # test PyTorch only
        hard_fail=False,  # throw error on benchmark failure
):
    y, t = [], time.time()
    device = select_device(device)
    for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, CPU, GPU)
        try:
            assert i not in (9, 10), 'inference not supported'  # Edge TPU and TF.js are unsupported
            assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13'  # CoreML
            if 'cpu' in device.type:
                assert cpu, 'inference not supported on CPU'
            if 'cuda' in device.type:
                assert gpu, 'inference not supported on GPU'

            # Export
            if f == '-':
                w = weights  # PyTorch format
            else:
                w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # all others
            assert suffix in str(w), 'export failed'

            # Validate
            result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
            metrics = result[0]  # metrics (mp, mr, map50, map, *losses(box, obj, cls))
            speeds = result[2]  # times (preprocess, inference, postprocess)
            y.append([name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2)])  # MB, mAP, t_inference
        except Exception as e:
            if hard_fail:
                assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
            LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
            y.append([name, None, None, None])  # mAP, t_inference
        if pt_only and i == 0:
            break  # break after PyTorch

    # Print results
    LOGGER.info('\n')
    parse_opt()
    notebook_init()  # print system info
    c = ['Format', 'Size (MB)', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
    py = pd.DataFrame(y, columns=c)
    LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
    LOGGER.info(str(py if map else py.iloc[:, :2]))
    return py


def test(
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=640,  # inference size (pixels)
        batch_size=1,  # batch size
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        half=False,  # use FP16 half-precision inference
        test=False,  # test exports only
        pt_only=False,  # test PyTorch only
        hard_fail=False,  # throw error on benchmark failure
):
    y, t = [], time.time()
    device = select_device(device)
    for i, (name, f, suffix, gpu) in export.export_formats().iterrows():  # index, (name, file, suffix, gpu-capable)
        try:
            w = weights if f == '-' else \
                export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]  # weights
            assert suffix in str(w), 'export failed'
            y.append([name, True])
        except Exception:
            y.append([name, False])  # mAP, t_inference

    # Print results
    LOGGER.info('\n')
    parse_opt()
    notebook_init()  # print system info
    py = pd.DataFrame(y, columns=['Format', 'Export'])
    LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
    LOGGER.info(str(py))
    return py


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--test', action='store_true', help='test exports only')
    parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
    parser.add_argument('--hard-fail', action='store_true', help='throw error on benchmark failure')
    opt = parser.parse_args()
    opt.data = check_yaml(opt.data)  # check YAML
    print_args(vars(opt))
    return opt


def main(opt):
    test(**vars(opt)) if opt.test else run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)