Spaces:
Runtime error
Runtime error
Zengyf-CVer
commited on
Commit
·
33e71b2
1
Parent(s):
495c1d3
app update
Browse files- .gitignore +74 -0
- README.md +1 -1
- app_02.py +114 -0
- export.py +608 -0
- models/__init__.py +0 -0
- models/common.py +746 -0
- models/experimental.py +104 -0
- models/tf.py +574 -0
- models/yolo.py +338 -0
- requirements.txt +49 -0
- utils/__init__.py +36 -0
- utils/activations.py +103 -0
- utils/augmentations.py +284 -0
- utils/autoanchor.py +170 -0
- utils/autobatch.py +66 -0
- utils/benchmarks.py +157 -0
- utils/callbacks.py +71 -0
- utils/dataloaders.py +1096 -0
- utils/downloads.py +178 -0
- utils/general.py +1026 -0
- utils/loss.py +234 -0
- utils/metrics.py +355 -0
- utils/plots.py +489 -0
- utils/torch_utils.py +316 -0
- val.py +394 -0
- yolov5_model_p5_p6_all.sh +14 -0
.gitignore
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Streamlit YOLOv5 Model2X
|
2 |
+
# 创建人:曾逸夫
|
3 |
+
# 项目地址:https://gitee.com/CV_Lab/streamlit_yolov5_modle2x
|
4 |
+
|
5 |
+
# 图片格式
|
6 |
+
*.jpg
|
7 |
+
*.jpeg
|
8 |
+
*.png
|
9 |
+
*.svg
|
10 |
+
*.gif
|
11 |
+
|
12 |
+
# 视频格式
|
13 |
+
*.mp4
|
14 |
+
*.avi
|
15 |
+
.ipynb_checkpoints
|
16 |
+
/__pycache__
|
17 |
+
*/__pycache__
|
18 |
+
|
19 |
+
# 日志格式
|
20 |
+
*.log
|
21 |
+
*.data
|
22 |
+
*.txt
|
23 |
+
|
24 |
+
# 生成文件
|
25 |
+
*.pdf
|
26 |
+
*.xlsx
|
27 |
+
*.csv
|
28 |
+
|
29 |
+
# 参数文件
|
30 |
+
*.yaml
|
31 |
+
*.json
|
32 |
+
|
33 |
+
# 压缩文件格式
|
34 |
+
*.zip
|
35 |
+
*.tar
|
36 |
+
*.tar.gz
|
37 |
+
*.rar
|
38 |
+
|
39 |
+
# 字体格式
|
40 |
+
*.ttc
|
41 |
+
*.ttf
|
42 |
+
*.otf
|
43 |
+
*.pkl
|
44 |
+
|
45 |
+
# 模型文件
|
46 |
+
*.pt
|
47 |
+
*.db
|
48 |
+
*.onnx
|
49 |
+
*.pb
|
50 |
+
*.torchscript
|
51 |
+
*.tflite
|
52 |
+
*.mlmodel
|
53 |
+
*.engine
|
54 |
+
/*_web_model
|
55 |
+
/*_saved_model
|
56 |
+
/*_openvino_model
|
57 |
+
|
58 |
+
|
59 |
+
/flagged
|
60 |
+
/run
|
61 |
+
!requirements.txt
|
62 |
+
!cls_name/*
|
63 |
+
!model_config/*
|
64 |
+
!img_examples/*
|
65 |
+
|
66 |
+
!requirements.txt
|
67 |
+
!.pre-commit-config.yaml
|
68 |
+
|
69 |
+
test.py
|
70 |
+
test*.py
|
71 |
+
|
72 |
+
model_download.py
|
73 |
+
/bak
|
74 |
+
/weights
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Streamlit YOLOv5 Model2x
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
|
|
1 |
---
|
2 |
title: Streamlit YOLOv5 Model2x
|
3 |
+
emoji: 🚀
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: streamlit
|
app_02.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Streamlit YOLOv5 Model2X v0.1
|
2 |
+
# 创建人:曾逸夫
|
3 |
+
# 创建时间:2022-07-14
|
4 |
+
# 功能描述:多选,多项模型转换和打包下载
|
5 |
+
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import time
|
9 |
+
import zipfile
|
10 |
+
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
|
14 |
+
# 目录操作
|
15 |
+
def dir_opt(target_dir):
|
16 |
+
if os.path.exists(target_dir):
|
17 |
+
shutil.rmtree(target_dir)
|
18 |
+
os.mkdir(target_dir)
|
19 |
+
else:
|
20 |
+
os.mkdir(target_dir)
|
21 |
+
|
22 |
+
|
23 |
+
# 文件下载
|
24 |
+
def download_file(uploaded_file):
|
25 |
+
# --------------- 下载 ---------------
|
26 |
+
with open(f"{uploaded_file}", 'rb') as fmodel:
|
27 |
+
# 读取转换的模型文件(pt2x)
|
28 |
+
f_download_model = fmodel.read()
|
29 |
+
st.download_button(label='下载转换后的模型', data=f_download_model, file_name=f"{uploaded_file}")
|
30 |
+
fmodel.close()
|
31 |
+
|
32 |
+
|
33 |
+
# 文件压缩
|
34 |
+
def zipDir(origin_dir, compress_file):
|
35 |
+
# --------------- 压缩 ---------------
|
36 |
+
zip = zipfile.ZipFile(f"{compress_file}", "w", zipfile.ZIP_DEFLATED)
|
37 |
+
for path, dirnames, filenames in os.walk(f"{origin_dir}"):
|
38 |
+
fpath = path.replace(f"{origin_dir}", '')
|
39 |
+
for filename in filenames:
|
40 |
+
zip.write(os.path.join(path, filename), os.path.join(fpath, filename))
|
41 |
+
zip.close()
|
42 |
+
|
43 |
+
|
44 |
+
# params_include_list = ["torchscript", "onnx", "openvino", "engine", "coreml", "saved_model", "pb", "tflite", "tfjs"]
|
45 |
+
def cb_opt(weight_name, btn_model_list, params_include_list):
|
46 |
+
|
47 |
+
for i in range(len(btn_model_list)):
|
48 |
+
if btn_model_list[i]:
|
49 |
+
st.info(f"正在转换{params_include_list[i]}......")
|
50 |
+
s = time.time()
|
51 |
+
if i == 3:
|
52 |
+
os.system(
|
53 |
+
f'python export.py --weights ./weights/{weight_name} --include {params_include_list[i]} --device 0')
|
54 |
+
else:
|
55 |
+
os.system(f'python export.py --weights ./weights/{weight_name} --include {params_include_list[i]}')
|
56 |
+
e = time.time()
|
57 |
+
st.success(f"{params_include_list[i]}转换完成,用时{round((e-s), 2)}秒")
|
58 |
+
|
59 |
+
zipDir("./weights", "convert_weights.zip") # 打包weights目录,包括原始权重和转换后的权重
|
60 |
+
download_file("convert_weights.zip") # 下载打包文件
|
61 |
+
|
62 |
+
|
63 |
+
def main():
|
64 |
+
with st.container():
|
65 |
+
st.title("Streamlit YOLOv5 Model2X")
|
66 |
+
st.subheader('创建人:曾逸夫(Zeng Yifu)')
|
67 |
+
st.text("基于Streamlit的YOLOv5模型转换工具")
|
68 |
+
|
69 |
+
st.write("-------------------------------------------------------------")
|
70 |
+
|
71 |
+
dir_opt("./weights")
|
72 |
+
|
73 |
+
uploaded_file = st.file_uploader("选择YOLOv5模型文件(.pt)")
|
74 |
+
if uploaded_file is not None:
|
75 |
+
|
76 |
+
# 读取上传的模型文件(.pt)
|
77 |
+
weight_name = uploaded_file.name
|
78 |
+
|
79 |
+
st.info(f"正在写入{weight_name}......")
|
80 |
+
|
81 |
+
bytes_data = uploaded_file.getvalue()
|
82 |
+
with open(f"./weights/{weight_name}", 'wb') as fb:
|
83 |
+
fb.write(bytes_data)
|
84 |
+
fb.close()
|
85 |
+
st.success(f"{weight_name}写入成功!")
|
86 |
+
|
87 |
+
st.text("请选择转换的类型:")
|
88 |
+
cb_torchscript = st.checkbox('TorchScript')
|
89 |
+
cb_onnx = st.checkbox('ONNX')
|
90 |
+
cb_openvino = st.checkbox('OpenVINO')
|
91 |
+
cb_engine = st.checkbox('TensorRT')
|
92 |
+
cb_coreml = st.checkbox('CoreML')
|
93 |
+
cb_saved_model = st.checkbox('TensorFlow SavedModel')
|
94 |
+
cb_pb = st.checkbox('TensorFlow GraphDef')
|
95 |
+
cb_tflite = st.checkbox('TensorFlow Lite')
|
96 |
+
# cb_edgetpu = st.checkbox('TensorFlow Edge TPU')
|
97 |
+
cb_tfjs = st.checkbox('TensorFlow.js')
|
98 |
+
|
99 |
+
btn_convert = st.button('转换')
|
100 |
+
|
101 |
+
btn_model_list = [
|
102 |
+
cb_torchscript, cb_onnx, cb_openvino, cb_engine, cb_coreml, cb_saved_model, cb_pb, cb_tflite, cb_tfjs]
|
103 |
+
|
104 |
+
params_include_list = [
|
105 |
+
"torchscript", "onnx", "openvino", "engine", "coreml", "saved_model", "pb", "tflite", "tfjs"]
|
106 |
+
|
107 |
+
if btn_convert:
|
108 |
+
cb_opt(weight_name, btn_model_list, params_include_list)
|
109 |
+
|
110 |
+
st.write("-------------------------------------------------------------")
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
main()
|
export.py
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
4 |
+
|
5 |
+
Format | `export.py --include` | Model
|
6 |
+
--- | --- | ---
|
7 |
+
PyTorch | - | yolov5s.pt
|
8 |
+
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
+
ONNX | `onnx` | yolov5s.onnx
|
10 |
+
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
+
TensorRT | `engine` | yolov5s.engine
|
12 |
+
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
+
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
+
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
+
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
+
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
+
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
+
|
19 |
+
Requirements:
|
20 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
21 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
22 |
+
|
23 |
+
Usage:
|
24 |
+
$ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
|
25 |
+
|
26 |
+
Inference:
|
27 |
+
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
|
28 |
+
yolov5s.torchscript # TorchScript
|
29 |
+
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
30 |
+
yolov5s.xml # OpenVINO
|
31 |
+
yolov5s.engine # TensorRT
|
32 |
+
yolov5s.mlmodel # CoreML (macOS-only)
|
33 |
+
yolov5s_saved_model # TensorFlow SavedModel
|
34 |
+
yolov5s.pb # TensorFlow GraphDef
|
35 |
+
yolov5s.tflite # TensorFlow Lite
|
36 |
+
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
37 |
+
|
38 |
+
TensorFlow.js:
|
39 |
+
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
40 |
+
$ npm install
|
41 |
+
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
42 |
+
$ npm start
|
43 |
+
"""
|
44 |
+
|
45 |
+
import argparse
|
46 |
+
import json
|
47 |
+
import os
|
48 |
+
import platform
|
49 |
+
import subprocess
|
50 |
+
import sys
|
51 |
+
import time
|
52 |
+
import warnings
|
53 |
+
from pathlib import Path
|
54 |
+
|
55 |
+
import pandas as pd
|
56 |
+
import torch
|
57 |
+
import yaml
|
58 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
59 |
+
|
60 |
+
FILE = Path(__file__).resolve()
|
61 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
62 |
+
if str(ROOT) not in sys.path:
|
63 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
64 |
+
if platform.system() != 'Windows':
|
65 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
66 |
+
|
67 |
+
from models.experimental import attempt_load
|
68 |
+
from models.yolo import Detect
|
69 |
+
from utils.dataloaders import LoadImages
|
70 |
+
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr,
|
71 |
+
file_size, print_args, url2file)
|
72 |
+
from utils.torch_utils import select_device
|
73 |
+
|
74 |
+
|
75 |
+
def export_formats():
|
76 |
+
# YOLOv5 export formats
|
77 |
+
x = [
|
78 |
+
['PyTorch', '-', '.pt', True, True],
|
79 |
+
['TorchScript', 'torchscript', '.torchscript', True, True],
|
80 |
+
['ONNX', 'onnx', '.onnx', True, True],
|
81 |
+
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
82 |
+
['TensorRT', 'engine', '.engine', False, True],
|
83 |
+
['CoreML', 'coreml', '.mlmodel', True, False],
|
84 |
+
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
85 |
+
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
86 |
+
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
87 |
+
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
88 |
+
['TensorFlow.js', 'tfjs', '_web_model', False, False],]
|
89 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
90 |
+
|
91 |
+
|
92 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
93 |
+
# YOLOv5 TorchScript model export
|
94 |
+
try:
|
95 |
+
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
96 |
+
f = file.with_suffix('.torchscript')
|
97 |
+
|
98 |
+
ts = torch.jit.trace(model, im, strict=False)
|
99 |
+
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
100 |
+
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
101 |
+
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
102 |
+
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
103 |
+
else:
|
104 |
+
ts.save(str(f), _extra_files=extra_files)
|
105 |
+
|
106 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
107 |
+
return f
|
108 |
+
except Exception as e:
|
109 |
+
LOGGER.info(f'{prefix} export failure: {e}')
|
110 |
+
|
111 |
+
|
112 |
+
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
|
113 |
+
# YOLOv5 ONNX export
|
114 |
+
try:
|
115 |
+
check_requirements(('onnx',))
|
116 |
+
import onnx
|
117 |
+
|
118 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
119 |
+
f = file.with_suffix('.onnx')
|
120 |
+
|
121 |
+
torch.onnx.export(
|
122 |
+
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
123 |
+
im.cpu() if dynamic else im,
|
124 |
+
f,
|
125 |
+
verbose=False,
|
126 |
+
opset_version=opset,
|
127 |
+
training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
|
128 |
+
do_constant_folding=not train,
|
129 |
+
input_names=['images'],
|
130 |
+
output_names=['output'],
|
131 |
+
dynamic_axes={
|
132 |
+
'images': {
|
133 |
+
0: 'batch',
|
134 |
+
2: 'height',
|
135 |
+
3: 'width'}, # shape(1,3,640,640)
|
136 |
+
'output': {
|
137 |
+
0: 'batch',
|
138 |
+
1: 'anchors'} # shape(1,25200,85)
|
139 |
+
} if dynamic else None)
|
140 |
+
|
141 |
+
# Checks
|
142 |
+
model_onnx = onnx.load(f) # load onnx model
|
143 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
144 |
+
|
145 |
+
# Metadata
|
146 |
+
d = {'stride': int(max(model.stride)), 'names': model.names}
|
147 |
+
for k, v in d.items():
|
148 |
+
meta = model_onnx.metadata_props.add()
|
149 |
+
meta.key, meta.value = k, str(v)
|
150 |
+
onnx.save(model_onnx, f)
|
151 |
+
|
152 |
+
# Simplify
|
153 |
+
if simplify:
|
154 |
+
try:
|
155 |
+
check_requirements(('onnx-simplifier',))
|
156 |
+
import onnxsim
|
157 |
+
|
158 |
+
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
159 |
+
model_onnx, check = onnxsim.simplify(model_onnx,
|
160 |
+
dynamic_input_shape=dynamic,
|
161 |
+
input_shapes={'images': list(im.shape)} if dynamic else None)
|
162 |
+
assert check, 'assert check failed'
|
163 |
+
onnx.save(model_onnx, f)
|
164 |
+
except Exception as e:
|
165 |
+
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
166 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
167 |
+
return f
|
168 |
+
except Exception as e:
|
169 |
+
LOGGER.info(f'{prefix} export failure: {e}')
|
170 |
+
|
171 |
+
|
172 |
+
def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
|
173 |
+
# YOLOv5 OpenVINO export
|
174 |
+
try:
|
175 |
+
check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
176 |
+
import openvino.inference_engine as ie
|
177 |
+
|
178 |
+
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
179 |
+
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
180 |
+
|
181 |
+
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
182 |
+
subprocess.check_output(cmd.split()) # export
|
183 |
+
with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g:
|
184 |
+
yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml
|
185 |
+
|
186 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
187 |
+
return f
|
188 |
+
except Exception as e:
|
189 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
190 |
+
|
191 |
+
|
192 |
+
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
193 |
+
# YOLOv5 CoreML export
|
194 |
+
try:
|
195 |
+
check_requirements(('coremltools',))
|
196 |
+
import coremltools as ct
|
197 |
+
|
198 |
+
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
199 |
+
f = file.with_suffix('.mlmodel')
|
200 |
+
|
201 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
202 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
203 |
+
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
204 |
+
if bits < 32:
|
205 |
+
if platform.system() == 'Darwin': # quantization only supported on macOS
|
206 |
+
with warnings.catch_warnings():
|
207 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
208 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
209 |
+
else:
|
210 |
+
print(f'{prefix} quantization only supported on macOS, skipping...')
|
211 |
+
ct_model.save(f)
|
212 |
+
|
213 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
214 |
+
return ct_model, f
|
215 |
+
except Exception as e:
|
216 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
217 |
+
return None, None
|
218 |
+
|
219 |
+
|
220 |
+
def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
221 |
+
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
222 |
+
try:
|
223 |
+
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
224 |
+
try:
|
225 |
+
import tensorrt as trt
|
226 |
+
except Exception:
|
227 |
+
if platform.system() == 'Linux':
|
228 |
+
check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
|
229 |
+
import tensorrt as trt
|
230 |
+
|
231 |
+
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
232 |
+
grid = model.model[-1].anchor_grid
|
233 |
+
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
234 |
+
export_onnx(model, im, file, 12, train, False, simplify) # opset 12
|
235 |
+
model.model[-1].anchor_grid = grid
|
236 |
+
else: # TensorRT >= 8
|
237 |
+
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
238 |
+
export_onnx(model, im, file, 13, train, False, simplify) # opset 13
|
239 |
+
onnx = file.with_suffix('.onnx')
|
240 |
+
|
241 |
+
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
242 |
+
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
243 |
+
f = file.with_suffix('.engine') # TensorRT engine file
|
244 |
+
logger = trt.Logger(trt.Logger.INFO)
|
245 |
+
if verbose:
|
246 |
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
247 |
+
|
248 |
+
builder = trt.Builder(logger)
|
249 |
+
config = builder.create_builder_config()
|
250 |
+
config.max_workspace_size = workspace * 1 << 30
|
251 |
+
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
252 |
+
|
253 |
+
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
254 |
+
network = builder.create_network(flag)
|
255 |
+
parser = trt.OnnxParser(network, logger)
|
256 |
+
if not parser.parse_from_file(str(onnx)):
|
257 |
+
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
258 |
+
|
259 |
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
260 |
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
261 |
+
LOGGER.info(f'{prefix} Network Description:')
|
262 |
+
for inp in inputs:
|
263 |
+
LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
|
264 |
+
for out in outputs:
|
265 |
+
LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
|
266 |
+
|
267 |
+
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}')
|
268 |
+
if builder.platform_has_fast_fp16 and half:
|
269 |
+
config.set_flag(trt.BuilderFlag.FP16)
|
270 |
+
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
271 |
+
t.write(engine.serialize())
|
272 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
273 |
+
return f
|
274 |
+
except Exception as e:
|
275 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
276 |
+
|
277 |
+
|
278 |
+
def export_saved_model(model,
|
279 |
+
im,
|
280 |
+
file,
|
281 |
+
dynamic,
|
282 |
+
tf_nms=False,
|
283 |
+
agnostic_nms=False,
|
284 |
+
topk_per_class=100,
|
285 |
+
topk_all=100,
|
286 |
+
iou_thres=0.45,
|
287 |
+
conf_thres=0.25,
|
288 |
+
keras=False,
|
289 |
+
prefix=colorstr('TensorFlow SavedModel:')):
|
290 |
+
# YOLOv5 TensorFlow SavedModel export
|
291 |
+
try:
|
292 |
+
import tensorflow as tf
|
293 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
294 |
+
|
295 |
+
from models.tf import TFDetect, TFModel
|
296 |
+
|
297 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
298 |
+
f = str(file).replace('.pt', '_saved_model')
|
299 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
300 |
+
|
301 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
302 |
+
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
303 |
+
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
304 |
+
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
305 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
306 |
+
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
307 |
+
keras_model.trainable = False
|
308 |
+
keras_model.summary()
|
309 |
+
if keras:
|
310 |
+
keras_model.save(f, save_format='tf')
|
311 |
+
else:
|
312 |
+
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
313 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
314 |
+
m = m.get_concrete_function(spec)
|
315 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
316 |
+
tfm = tf.Module()
|
317 |
+
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec])
|
318 |
+
tfm.__call__(im)
|
319 |
+
tf.saved_model.save(tfm,
|
320 |
+
f,
|
321 |
+
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
|
322 |
+
if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
323 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
324 |
+
return keras_model, f
|
325 |
+
except Exception as e:
|
326 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
327 |
+
return None, None
|
328 |
+
|
329 |
+
|
330 |
+
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
331 |
+
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
332 |
+
try:
|
333 |
+
import tensorflow as tf
|
334 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
335 |
+
|
336 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
337 |
+
f = file.with_suffix('.pb')
|
338 |
+
|
339 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
340 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
341 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
342 |
+
frozen_func.graph.as_graph_def()
|
343 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
344 |
+
|
345 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
346 |
+
return f
|
347 |
+
except Exception as e:
|
348 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
349 |
+
|
350 |
+
|
351 |
+
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
352 |
+
# YOLOv5 TensorFlow Lite export
|
353 |
+
try:
|
354 |
+
import tensorflow as tf
|
355 |
+
|
356 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
357 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
358 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
359 |
+
|
360 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
361 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
362 |
+
converter.target_spec.supported_types = [tf.float16]
|
363 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
364 |
+
if int8:
|
365 |
+
from models.tf import representative_dataset_gen
|
366 |
+
dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data
|
367 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
368 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
369 |
+
converter.target_spec.supported_types = []
|
370 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
371 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
372 |
+
converter.experimental_new_quantizer = True
|
373 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
374 |
+
if nms or agnostic_nms:
|
375 |
+
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
376 |
+
|
377 |
+
tflite_model = converter.convert()
|
378 |
+
open(f, "wb").write(tflite_model)
|
379 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
380 |
+
return f
|
381 |
+
except Exception as e:
|
382 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
383 |
+
|
384 |
+
|
385 |
+
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
386 |
+
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
387 |
+
try:
|
388 |
+
cmd = 'edgetpu_compiler --version'
|
389 |
+
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
390 |
+
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
391 |
+
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
392 |
+
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
393 |
+
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
394 |
+
for c in (
|
395 |
+
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
396 |
+
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
397 |
+
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
398 |
+
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
399 |
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
400 |
+
|
401 |
+
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
402 |
+
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
403 |
+
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
404 |
+
|
405 |
+
cmd = f"edgetpu_compiler -s -o {file.parent} {f_tfl}"
|
406 |
+
subprocess.run(cmd.split(), check=True)
|
407 |
+
|
408 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
409 |
+
return f
|
410 |
+
except Exception as e:
|
411 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
412 |
+
|
413 |
+
|
414 |
+
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
415 |
+
# YOLOv5 TensorFlow.js export
|
416 |
+
try:
|
417 |
+
check_requirements(('tensorflowjs',))
|
418 |
+
import re
|
419 |
+
|
420 |
+
import tensorflowjs as tfjs
|
421 |
+
|
422 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
423 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
424 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
425 |
+
f_json = f'{f}/model.json' # *.json path
|
426 |
+
|
427 |
+
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
428 |
+
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
429 |
+
subprocess.run(cmd.split())
|
430 |
+
|
431 |
+
with open(f_json) as j:
|
432 |
+
json = j.read()
|
433 |
+
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
434 |
+
subst = re.sub(
|
435 |
+
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
436 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
437 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
438 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
439 |
+
r'"Identity_1": {"name": "Identity_1"}, '
|
440 |
+
r'"Identity_2": {"name": "Identity_2"}, '
|
441 |
+
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
442 |
+
j.write(subst)
|
443 |
+
|
444 |
+
LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
|
445 |
+
return f
|
446 |
+
except Exception as e:
|
447 |
+
LOGGER.info(f'\n{prefix} export failure: {e}')
|
448 |
+
|
449 |
+
|
450 |
+
@torch.no_grad()
|
451 |
+
def run(
|
452 |
+
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
453 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
454 |
+
imgsz=(640, 640), # image (height, width)
|
455 |
+
batch_size=1, # batch size
|
456 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
457 |
+
include=('torchscript', 'onnx'), # include formats
|
458 |
+
half=False, # FP16 half-precision export
|
459 |
+
inplace=False, # set YOLOv5 Detect() inplace=True
|
460 |
+
train=False, # model.train() mode
|
461 |
+
keras=False, # use Keras
|
462 |
+
optimize=False, # TorchScript: optimize for mobile
|
463 |
+
int8=False, # CoreML/TF INT8 quantization
|
464 |
+
dynamic=False, # ONNX/TF: dynamic axes
|
465 |
+
simplify=False, # ONNX: simplify model
|
466 |
+
opset=12, # ONNX: opset version
|
467 |
+
verbose=False, # TensorRT: verbose log
|
468 |
+
workspace=4, # TensorRT: workspace size (GB)
|
469 |
+
nms=False, # TF: add NMS to model
|
470 |
+
agnostic_nms=False, # TF: add agnostic NMS to model
|
471 |
+
topk_per_class=100, # TF.js NMS: topk per class to keep
|
472 |
+
topk_all=100, # TF.js NMS: topk for all classes to keep
|
473 |
+
iou_thres=0.45, # TF.js NMS: IoU threshold
|
474 |
+
conf_thres=0.25, # TF.js NMS: confidence threshold
|
475 |
+
):
|
476 |
+
t = time.time()
|
477 |
+
include = [x.lower() for x in include] # to lowercase
|
478 |
+
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
479 |
+
flags = [x in include for x in fmts]
|
480 |
+
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
481 |
+
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
|
482 |
+
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
483 |
+
|
484 |
+
# Load PyTorch model
|
485 |
+
device = select_device(device)
|
486 |
+
if half:
|
487 |
+
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
488 |
+
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
489 |
+
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
490 |
+
nc, names = model.nc, model.names # number of classes, class names
|
491 |
+
|
492 |
+
# Checks
|
493 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
494 |
+
assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'
|
495 |
+
|
496 |
+
# Input
|
497 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
498 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
499 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
500 |
+
|
501 |
+
# Update model
|
502 |
+
model.train() if train else model.eval() # training mode = no Detect() layer grid construction
|
503 |
+
for k, m in model.named_modules():
|
504 |
+
if isinstance(m, Detect):
|
505 |
+
m.inplace = inplace
|
506 |
+
m.onnx_dynamic = dynamic
|
507 |
+
m.export = True
|
508 |
+
|
509 |
+
for _ in range(2):
|
510 |
+
y = model(im) # dry runs
|
511 |
+
if half and not coreml:
|
512 |
+
im, model = im.half(), model.half() # to FP16
|
513 |
+
shape = tuple(y[0].shape) # model output shape
|
514 |
+
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
515 |
+
|
516 |
+
# Exports
|
517 |
+
f = [''] * 10 # exported filenames
|
518 |
+
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
519 |
+
if jit:
|
520 |
+
f[0] = export_torchscript(model, im, file, optimize)
|
521 |
+
if engine: # TensorRT required before ONNX
|
522 |
+
f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
|
523 |
+
if onnx or xml: # OpenVINO requires ONNX
|
524 |
+
f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
|
525 |
+
if xml: # OpenVINO
|
526 |
+
f[3] = export_openvino(model, file, half)
|
527 |
+
if coreml:
|
528 |
+
_, f[4] = export_coreml(model, im, file, int8, half)
|
529 |
+
|
530 |
+
# TensorFlow Exports
|
531 |
+
if any((saved_model, pb, tflite, edgetpu, tfjs)):
|
532 |
+
if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
|
533 |
+
check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
|
534 |
+
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
535 |
+
model, f[5] = export_saved_model(model.cpu(),
|
536 |
+
im,
|
537 |
+
file,
|
538 |
+
dynamic,
|
539 |
+
tf_nms=nms or agnostic_nms or tfjs,
|
540 |
+
agnostic_nms=agnostic_nms or tfjs,
|
541 |
+
topk_per_class=topk_per_class,
|
542 |
+
topk_all=topk_all,
|
543 |
+
iou_thres=iou_thres,
|
544 |
+
conf_thres=conf_thres,
|
545 |
+
keras=keras)
|
546 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
547 |
+
f[6] = export_pb(model, file)
|
548 |
+
if tflite or edgetpu:
|
549 |
+
f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
550 |
+
if edgetpu:
|
551 |
+
f[8] = export_edgetpu(file)
|
552 |
+
if tfjs:
|
553 |
+
f[9] = export_tfjs(file)
|
554 |
+
|
555 |
+
# Finish
|
556 |
+
f = [str(x) for x in f if x] # filter out '' and None
|
557 |
+
if any(f):
|
558 |
+
h = '--half' if half else '' # --half FP16 inference arg
|
559 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
|
560 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
561 |
+
f"\nDetect: python detect.py --weights {f[-1]} {h}"
|
562 |
+
f"\nValidate: python val.py --weights {f[-1]} {h}"
|
563 |
+
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
|
564 |
+
f"\nVisualize: https://netron.app")
|
565 |
+
return f # return list of exported files/dirs
|
566 |
+
|
567 |
+
|
568 |
+
def parse_opt():
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
571 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
|
572 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
573 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
574 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
575 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
576 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
577 |
+
parser.add_argument('--train', action='store_true', help='model.train() mode')
|
578 |
+
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
579 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
580 |
+
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
581 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
|
582 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
583 |
+
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
|
584 |
+
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
585 |
+
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
586 |
+
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
587 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
588 |
+
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
589 |
+
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
590 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
591 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
592 |
+
parser.add_argument('--include',
|
593 |
+
nargs='+',
|
594 |
+
default=['torchscript', 'onnx'],
|
595 |
+
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
|
596 |
+
opt = parser.parse_args()
|
597 |
+
print_args(vars(opt))
|
598 |
+
return opt
|
599 |
+
|
600 |
+
|
601 |
+
def main(opt):
|
602 |
+
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
603 |
+
run(**vars(opt))
|
604 |
+
|
605 |
+
|
606 |
+
if __name__ == "__main__":
|
607 |
+
opt = parse_opt()
|
608 |
+
main(opt)
|
models/__init__.py
ADDED
File without changes
|
models/common.py
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Common modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import json
|
7 |
+
import math
|
8 |
+
import platform
|
9 |
+
import warnings
|
10 |
+
from collections import OrderedDict, namedtuple
|
11 |
+
from copy import copy
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import pandas as pd
|
17 |
+
import requests
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import yaml
|
21 |
+
from PIL import Image
|
22 |
+
from torch.cuda import amp
|
23 |
+
|
24 |
+
from utils.dataloaders import exif_transpose, letterbox
|
25 |
+
from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
|
26 |
+
make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
|
27 |
+
from utils.plots import Annotator, colors, save_one_box
|
28 |
+
from utils.torch_utils import copy_attr, time_sync
|
29 |
+
|
30 |
+
|
31 |
+
def autopad(k, p=None): # kernel, padding
|
32 |
+
# Pad to 'same'
|
33 |
+
if p is None:
|
34 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
35 |
+
return p
|
36 |
+
|
37 |
+
|
38 |
+
class Conv(nn.Module):
|
39 |
+
# Standard convolution
|
40 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
41 |
+
super().__init__()
|
42 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
43 |
+
self.bn = nn.BatchNorm2d(c2)
|
44 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
return self.act(self.bn(self.conv(x)))
|
48 |
+
|
49 |
+
def forward_fuse(self, x):
|
50 |
+
return self.act(self.conv(x))
|
51 |
+
|
52 |
+
|
53 |
+
class DWConv(Conv):
|
54 |
+
# Depth-wise convolution class
|
55 |
+
def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
56 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
57 |
+
|
58 |
+
|
59 |
+
class DWConvTranspose2d(nn.ConvTranspose2d):
|
60 |
+
# Depth-wise transpose convolution class
|
61 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
62 |
+
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
63 |
+
|
64 |
+
|
65 |
+
class TransformerLayer(nn.Module):
|
66 |
+
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
67 |
+
def __init__(self, c, num_heads):
|
68 |
+
super().__init__()
|
69 |
+
self.q = nn.Linear(c, c, bias=False)
|
70 |
+
self.k = nn.Linear(c, c, bias=False)
|
71 |
+
self.v = nn.Linear(c, c, bias=False)
|
72 |
+
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
73 |
+
self.fc1 = nn.Linear(c, c, bias=False)
|
74 |
+
self.fc2 = nn.Linear(c, c, bias=False)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
78 |
+
x = self.fc2(self.fc1(x)) + x
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class TransformerBlock(nn.Module):
|
83 |
+
# Vision Transformer https://arxiv.org/abs/2010.11929
|
84 |
+
def __init__(self, c1, c2, num_heads, num_layers):
|
85 |
+
super().__init__()
|
86 |
+
self.conv = None
|
87 |
+
if c1 != c2:
|
88 |
+
self.conv = Conv(c1, c2)
|
89 |
+
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
90 |
+
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
91 |
+
self.c2 = c2
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
if self.conv is not None:
|
95 |
+
x = self.conv(x)
|
96 |
+
b, _, w, h = x.shape
|
97 |
+
p = x.flatten(2).permute(2, 0, 1)
|
98 |
+
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
99 |
+
|
100 |
+
|
101 |
+
class Bottleneck(nn.Module):
|
102 |
+
# Standard bottleneck
|
103 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
104 |
+
super().__init__()
|
105 |
+
c_ = int(c2 * e) # hidden channels
|
106 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
107 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
108 |
+
self.add = shortcut and c1 == c2
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
112 |
+
|
113 |
+
|
114 |
+
class BottleneckCSP(nn.Module):
|
115 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
116 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
117 |
+
super().__init__()
|
118 |
+
c_ = int(c2 * e) # hidden channels
|
119 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
120 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
121 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
122 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
123 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
124 |
+
self.act = nn.SiLU()
|
125 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
129 |
+
y2 = self.cv2(x)
|
130 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
131 |
+
|
132 |
+
|
133 |
+
class CrossConv(nn.Module):
|
134 |
+
# Cross Convolution Downsample
|
135 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
136 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
137 |
+
super().__init__()
|
138 |
+
c_ = int(c2 * e) # hidden channels
|
139 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
140 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
141 |
+
self.add = shortcut and c1 == c2
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
145 |
+
|
146 |
+
|
147 |
+
class C3(nn.Module):
|
148 |
+
# CSP Bottleneck with 3 convolutions
|
149 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
150 |
+
super().__init__()
|
151 |
+
c_ = int(c2 * e) # hidden channels
|
152 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
153 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
154 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
155 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
159 |
+
|
160 |
+
|
161 |
+
class C3x(C3):
|
162 |
+
# C3 module with cross-convolutions
|
163 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
164 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
165 |
+
c_ = int(c2 * e)
|
166 |
+
self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
|
167 |
+
|
168 |
+
|
169 |
+
class C3TR(C3):
|
170 |
+
# C3 module with TransformerBlock()
|
171 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
172 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
173 |
+
c_ = int(c2 * e)
|
174 |
+
self.m = TransformerBlock(c_, c_, 4, n)
|
175 |
+
|
176 |
+
|
177 |
+
class C3SPP(C3):
|
178 |
+
# C3 module with SPP()
|
179 |
+
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
|
180 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
181 |
+
c_ = int(c2 * e)
|
182 |
+
self.m = SPP(c_, c_, k)
|
183 |
+
|
184 |
+
|
185 |
+
class C3Ghost(C3):
|
186 |
+
# C3 module with GhostBottleneck()
|
187 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
188 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
189 |
+
c_ = int(c2 * e) # hidden channels
|
190 |
+
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
191 |
+
|
192 |
+
|
193 |
+
class SPP(nn.Module):
|
194 |
+
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
195 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
196 |
+
super().__init__()
|
197 |
+
c_ = c1 // 2 # hidden channels
|
198 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
199 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
200 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
x = self.cv1(x)
|
204 |
+
with warnings.catch_warnings():
|
205 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
206 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
207 |
+
|
208 |
+
|
209 |
+
class SPPF(nn.Module):
|
210 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
211 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
212 |
+
super().__init__()
|
213 |
+
c_ = c1 // 2 # hidden channels
|
214 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
215 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
216 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
217 |
+
|
218 |
+
def forward(self, x):
|
219 |
+
x = self.cv1(x)
|
220 |
+
with warnings.catch_warnings():
|
221 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
222 |
+
y1 = self.m(x)
|
223 |
+
y2 = self.m(y1)
|
224 |
+
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
225 |
+
|
226 |
+
|
227 |
+
class Focus(nn.Module):
|
228 |
+
# Focus wh information into c-space
|
229 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
230 |
+
super().__init__()
|
231 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
232 |
+
# self.contract = Contract(gain=2)
|
233 |
+
|
234 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
235 |
+
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
236 |
+
# return self.conv(self.contract(x))
|
237 |
+
|
238 |
+
|
239 |
+
class GhostConv(nn.Module):
|
240 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
241 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
242 |
+
super().__init__()
|
243 |
+
c_ = c2 // 2 # hidden channels
|
244 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
245 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
y = self.cv1(x)
|
249 |
+
return torch.cat((y, self.cv2(y)), 1)
|
250 |
+
|
251 |
+
|
252 |
+
class GhostBottleneck(nn.Module):
|
253 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
254 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
255 |
+
super().__init__()
|
256 |
+
c_ = c2 // 2
|
257 |
+
self.conv = nn.Sequential(
|
258 |
+
GhostConv(c1, c_, 1, 1), # pw
|
259 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
260 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
261 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
262 |
+
act=False)) if s == 2 else nn.Identity()
|
263 |
+
|
264 |
+
def forward(self, x):
|
265 |
+
return self.conv(x) + self.shortcut(x)
|
266 |
+
|
267 |
+
|
268 |
+
class Contract(nn.Module):
|
269 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
270 |
+
def __init__(self, gain=2):
|
271 |
+
super().__init__()
|
272 |
+
self.gain = gain
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
276 |
+
s = self.gain
|
277 |
+
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
278 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
279 |
+
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
280 |
+
|
281 |
+
|
282 |
+
class Expand(nn.Module):
|
283 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
284 |
+
def __init__(self, gain=2):
|
285 |
+
super().__init__()
|
286 |
+
self.gain = gain
|
287 |
+
|
288 |
+
def forward(self, x):
|
289 |
+
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
290 |
+
s = self.gain
|
291 |
+
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
292 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
293 |
+
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
294 |
+
|
295 |
+
|
296 |
+
class Concat(nn.Module):
|
297 |
+
# Concatenate a list of tensors along dimension
|
298 |
+
def __init__(self, dimension=1):
|
299 |
+
super().__init__()
|
300 |
+
self.d = dimension
|
301 |
+
|
302 |
+
def forward(self, x):
|
303 |
+
return torch.cat(x, self.d)
|
304 |
+
|
305 |
+
|
306 |
+
class DetectMultiBackend(nn.Module):
|
307 |
+
# YOLOv5 MultiBackend class for python inference on various backends
|
308 |
+
def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False):
|
309 |
+
# Usage:
|
310 |
+
# PyTorch: weights = *.pt
|
311 |
+
# TorchScript: *.torchscript
|
312 |
+
# ONNX Runtime: *.onnx
|
313 |
+
# ONNX OpenCV DNN: *.onnx with --dnn
|
314 |
+
# OpenVINO: *.xml
|
315 |
+
# CoreML: *.mlmodel
|
316 |
+
# TensorRT: *.engine
|
317 |
+
# TensorFlow SavedModel: *_saved_model
|
318 |
+
# TensorFlow GraphDef: *.pb
|
319 |
+
# TensorFlow Lite: *.tflite
|
320 |
+
# TensorFlow Edge TPU: *_edgetpu.tflite
|
321 |
+
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
322 |
+
|
323 |
+
super().__init__()
|
324 |
+
w = str(weights[0] if isinstance(weights, list) else weights)
|
325 |
+
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
|
326 |
+
w = attempt_download(w) # download if not local
|
327 |
+
fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
|
328 |
+
stride, names = 32, [f'class{i}' for i in range(1000)] # assign defaults
|
329 |
+
if data: # assign class names (optional)
|
330 |
+
with open(data, errors='ignore') as f:
|
331 |
+
names = yaml.safe_load(f)['names']
|
332 |
+
|
333 |
+
if pt: # PyTorch
|
334 |
+
model = attempt_load(weights if isinstance(weights, list) else w, device=device)
|
335 |
+
stride = max(int(model.stride.max()), 32) # model stride
|
336 |
+
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
337 |
+
model.half() if fp16 else model.float()
|
338 |
+
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
339 |
+
elif jit: # TorchScript
|
340 |
+
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
341 |
+
extra_files = {'config.txt': ''} # model metadata
|
342 |
+
model = torch.jit.load(w, _extra_files=extra_files)
|
343 |
+
model.half() if fp16 else model.float()
|
344 |
+
if extra_files['config.txt']:
|
345 |
+
d = json.loads(extra_files['config.txt']) # extra_files dict
|
346 |
+
stride, names = int(d['stride']), d['names']
|
347 |
+
elif dnn: # ONNX OpenCV DNN
|
348 |
+
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
349 |
+
check_requirements(('opencv-python>=4.5.4',))
|
350 |
+
net = cv2.dnn.readNetFromONNX(w)
|
351 |
+
elif onnx: # ONNX Runtime
|
352 |
+
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
353 |
+
cuda = torch.cuda.is_available()
|
354 |
+
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
355 |
+
import onnxruntime
|
356 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
357 |
+
session = onnxruntime.InferenceSession(w, providers=providers)
|
358 |
+
meta = session.get_modelmeta().custom_metadata_map # metadata
|
359 |
+
if 'stride' in meta:
|
360 |
+
stride, names = int(meta['stride']), eval(meta['names'])
|
361 |
+
elif xml: # OpenVINO
|
362 |
+
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
363 |
+
check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
364 |
+
from openvino.runtime import Core, Layout, get_batch
|
365 |
+
ie = Core()
|
366 |
+
if not Path(w).is_file(): # if not *.xml
|
367 |
+
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
368 |
+
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
369 |
+
if network.get_parameters()[0].get_layout().empty:
|
370 |
+
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
371 |
+
batch_dim = get_batch(network)
|
372 |
+
if batch_dim.is_static:
|
373 |
+
batch_size = batch_dim.get_length()
|
374 |
+
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
375 |
+
output_layer = next(iter(executable_network.outputs))
|
376 |
+
meta = Path(w).with_suffix('.yaml')
|
377 |
+
if meta.exists():
|
378 |
+
stride, names = self._load_metadata(meta) # load metadata
|
379 |
+
elif engine: # TensorRT
|
380 |
+
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
381 |
+
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
382 |
+
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
383 |
+
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
384 |
+
logger = trt.Logger(trt.Logger.INFO)
|
385 |
+
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
386 |
+
model = runtime.deserialize_cuda_engine(f.read())
|
387 |
+
bindings = OrderedDict()
|
388 |
+
fp16 = False # default updated below
|
389 |
+
for index in range(model.num_bindings):
|
390 |
+
name = model.get_binding_name(index)
|
391 |
+
dtype = trt.nptype(model.get_binding_dtype(index))
|
392 |
+
shape = tuple(model.get_binding_shape(index))
|
393 |
+
data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
|
394 |
+
bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
|
395 |
+
if model.binding_is_input(index) and dtype == np.float16:
|
396 |
+
fp16 = True
|
397 |
+
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
398 |
+
context = model.create_execution_context()
|
399 |
+
batch_size = bindings['images'].shape[0]
|
400 |
+
elif coreml: # CoreML
|
401 |
+
LOGGER.info(f'Loading {w} for CoreML inference...')
|
402 |
+
import coremltools as ct
|
403 |
+
model = ct.models.MLModel(w)
|
404 |
+
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
405 |
+
if saved_model: # SavedModel
|
406 |
+
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
407 |
+
import tensorflow as tf
|
408 |
+
keras = False # assume TF1 saved_model
|
409 |
+
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
410 |
+
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
411 |
+
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
412 |
+
import tensorflow as tf
|
413 |
+
|
414 |
+
def wrap_frozen_graph(gd, inputs, outputs):
|
415 |
+
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
416 |
+
ge = x.graph.as_graph_element
|
417 |
+
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
418 |
+
|
419 |
+
gd = tf.Graph().as_graph_def() # graph_def
|
420 |
+
with open(w, 'rb') as f:
|
421 |
+
gd.ParseFromString(f.read())
|
422 |
+
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
|
423 |
+
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
424 |
+
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
425 |
+
from tflite_runtime.interpreter import Interpreter, load_delegate
|
426 |
+
except ImportError:
|
427 |
+
import tensorflow as tf
|
428 |
+
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
429 |
+
if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
|
430 |
+
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
431 |
+
delegate = {
|
432 |
+
'Linux': 'libedgetpu.so.1',
|
433 |
+
'Darwin': 'libedgetpu.1.dylib',
|
434 |
+
'Windows': 'edgetpu.dll'}[platform.system()]
|
435 |
+
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
436 |
+
else: # Lite
|
437 |
+
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
438 |
+
interpreter = Interpreter(model_path=w) # load TFLite model
|
439 |
+
interpreter.allocate_tensors() # allocate
|
440 |
+
input_details = interpreter.get_input_details() # inputs
|
441 |
+
output_details = interpreter.get_output_details() # outputs
|
442 |
+
elif tfjs:
|
443 |
+
raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
|
444 |
+
self.__dict__.update(locals()) # assign all variables to self
|
445 |
+
|
446 |
+
def forward(self, im, augment=False, visualize=False, val=False):
|
447 |
+
# YOLOv5 MultiBackend inference
|
448 |
+
b, ch, h, w = im.shape # batch, channel, height, width
|
449 |
+
if self.fp16 and im.dtype != torch.float16:
|
450 |
+
im = im.half() # to FP16
|
451 |
+
|
452 |
+
if self.pt: # PyTorch
|
453 |
+
y = self.model(im, augment=augment, visualize=visualize)[0]
|
454 |
+
elif self.jit: # TorchScript
|
455 |
+
y = self.model(im)[0]
|
456 |
+
elif self.dnn: # ONNX OpenCV DNN
|
457 |
+
im = im.cpu().numpy() # torch to numpy
|
458 |
+
self.net.setInput(im)
|
459 |
+
y = self.net.forward()
|
460 |
+
elif self.onnx: # ONNX Runtime
|
461 |
+
im = im.cpu().numpy() # torch to numpy
|
462 |
+
y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
|
463 |
+
elif self.xml: # OpenVINO
|
464 |
+
im = im.cpu().numpy() # FP32
|
465 |
+
y = self.executable_network([im])[self.output_layer]
|
466 |
+
elif self.engine: # TensorRT
|
467 |
+
assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
|
468 |
+
self.binding_addrs['images'] = int(im.data_ptr())
|
469 |
+
self.context.execute_v2(list(self.binding_addrs.values()))
|
470 |
+
y = self.bindings['output'].data
|
471 |
+
elif self.coreml: # CoreML
|
472 |
+
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
473 |
+
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
474 |
+
# im = im.resize((192, 320), Image.ANTIALIAS)
|
475 |
+
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
476 |
+
if 'confidence' in y:
|
477 |
+
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
478 |
+
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
479 |
+
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
480 |
+
else:
|
481 |
+
k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
|
482 |
+
y = y[k] # output
|
483 |
+
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
484 |
+
im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
|
485 |
+
if self.saved_model: # SavedModel
|
486 |
+
y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
|
487 |
+
elif self.pb: # GraphDef
|
488 |
+
y = self.frozen_func(x=self.tf.constant(im)).numpy()
|
489 |
+
else: # Lite or Edge TPU
|
490 |
+
input, output = self.input_details[0], self.output_details[0]
|
491 |
+
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
492 |
+
if int8:
|
493 |
+
scale, zero_point = input['quantization']
|
494 |
+
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
495 |
+
self.interpreter.set_tensor(input['index'], im)
|
496 |
+
self.interpreter.invoke()
|
497 |
+
y = self.interpreter.get_tensor(output['index'])
|
498 |
+
if int8:
|
499 |
+
scale, zero_point = output['quantization']
|
500 |
+
y = (y.astype(np.float32) - zero_point) * scale # re-scale
|
501 |
+
y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
502 |
+
|
503 |
+
if isinstance(y, np.ndarray):
|
504 |
+
y = torch.tensor(y, device=self.device)
|
505 |
+
return (y, []) if val else y
|
506 |
+
|
507 |
+
def warmup(self, imgsz=(1, 3, 640, 640)):
|
508 |
+
# Warmup model by running inference once
|
509 |
+
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
|
510 |
+
if any(warmup_types) and self.device.type != 'cpu':
|
511 |
+
im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
512 |
+
for _ in range(2 if self.jit else 1): #
|
513 |
+
self.forward(im) # warmup
|
514 |
+
|
515 |
+
@staticmethod
|
516 |
+
def model_type(p='path/to/model.pt'):
|
517 |
+
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
518 |
+
from export import export_formats
|
519 |
+
suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
|
520 |
+
check_suffix(p, suffixes) # checks
|
521 |
+
p = Path(p).name # eliminate trailing separators
|
522 |
+
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
|
523 |
+
xml |= xml2 # *_openvino_model or *.xml
|
524 |
+
tflite &= not edgetpu # *.tflite
|
525 |
+
return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
|
526 |
+
|
527 |
+
@staticmethod
|
528 |
+
def _load_metadata(f='path/to/meta.yaml'):
|
529 |
+
# Load metadata from meta.yaml if it exists
|
530 |
+
with open(f, errors='ignore') as f:
|
531 |
+
d = yaml.safe_load(f)
|
532 |
+
return d['stride'], d['names'] # assign stride, names
|
533 |
+
|
534 |
+
|
535 |
+
class AutoShape(nn.Module):
|
536 |
+
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
537 |
+
conf = 0.25 # NMS confidence threshold
|
538 |
+
iou = 0.45 # NMS IoU threshold
|
539 |
+
agnostic = False # NMS class-agnostic
|
540 |
+
multi_label = False # NMS multiple labels per box
|
541 |
+
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
542 |
+
max_det = 1000 # maximum number of detections per image
|
543 |
+
amp = False # Automatic Mixed Precision (AMP) inference
|
544 |
+
|
545 |
+
def __init__(self, model, verbose=True):
|
546 |
+
super().__init__()
|
547 |
+
if verbose:
|
548 |
+
LOGGER.info('Adding AutoShape... ')
|
549 |
+
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
550 |
+
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
551 |
+
self.pt = not self.dmb or model.pt # PyTorch model
|
552 |
+
self.model = model.eval()
|
553 |
+
|
554 |
+
def _apply(self, fn):
|
555 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
556 |
+
self = super()._apply(fn)
|
557 |
+
if self.pt:
|
558 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
559 |
+
m.stride = fn(m.stride)
|
560 |
+
m.grid = list(map(fn, m.grid))
|
561 |
+
if isinstance(m.anchor_grid, list):
|
562 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
563 |
+
return self
|
564 |
+
|
565 |
+
@torch.no_grad()
|
566 |
+
def forward(self, imgs, size=640, augment=False, profile=False):
|
567 |
+
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
568 |
+
# file: imgs = 'data/images/zidane.jpg' # str or PosixPath
|
569 |
+
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
570 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
571 |
+
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
572 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
573 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
574 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
575 |
+
|
576 |
+
t = [time_sync()]
|
577 |
+
p = next(self.model.parameters()) if self.pt else torch.zeros(1, device=self.model.device) # for device, type
|
578 |
+
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
579 |
+
if isinstance(imgs, torch.Tensor): # torch
|
580 |
+
with amp.autocast(autocast):
|
581 |
+
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
582 |
+
|
583 |
+
# Pre-process
|
584 |
+
n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images
|
585 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
586 |
+
for i, im in enumerate(imgs):
|
587 |
+
f = f'image{i}' # filename
|
588 |
+
if isinstance(im, (str, Path)): # filename or uri
|
589 |
+
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
590 |
+
im = np.asarray(exif_transpose(im))
|
591 |
+
elif isinstance(im, Image.Image): # PIL Image
|
592 |
+
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
593 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
594 |
+
if im.shape[0] < 5: # image in CHW
|
595 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
596 |
+
im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
|
597 |
+
s = im.shape[:2] # HWC
|
598 |
+
shape0.append(s) # image shape
|
599 |
+
g = (size / max(s)) # gain
|
600 |
+
shape1.append([y * g for y in s])
|
601 |
+
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
602 |
+
shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
|
603 |
+
x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
|
604 |
+
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
605 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
606 |
+
t.append(time_sync())
|
607 |
+
|
608 |
+
with amp.autocast(autocast):
|
609 |
+
# Inference
|
610 |
+
y = self.model(x, augment, profile) # forward
|
611 |
+
t.append(time_sync())
|
612 |
+
|
613 |
+
# Post-process
|
614 |
+
y = non_max_suppression(y if self.dmb else y[0],
|
615 |
+
self.conf,
|
616 |
+
self.iou,
|
617 |
+
self.classes,
|
618 |
+
self.agnostic,
|
619 |
+
self.multi_label,
|
620 |
+
max_det=self.max_det) # NMS
|
621 |
+
for i in range(n):
|
622 |
+
scale_coords(shape1, y[i][:, :4], shape0[i])
|
623 |
+
|
624 |
+
t.append(time_sync())
|
625 |
+
return Detections(imgs, y, files, t, self.names, x.shape)
|
626 |
+
|
627 |
+
|
628 |
+
class Detections:
|
629 |
+
# YOLOv5 detections class for inference results
|
630 |
+
def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
|
631 |
+
super().__init__()
|
632 |
+
d = pred[0].device # device
|
633 |
+
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
|
634 |
+
self.imgs = imgs # list of images as numpy arrays
|
635 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
636 |
+
self.names = names # class names
|
637 |
+
self.files = files # image filenames
|
638 |
+
self.times = times # profiling times
|
639 |
+
self.xyxy = pred # xyxy pixels
|
640 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
641 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
642 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
643 |
+
self.n = len(self.pred) # number of images (batch size)
|
644 |
+
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
645 |
+
self.s = shape # inference BCHW shape
|
646 |
+
|
647 |
+
def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
648 |
+
crops = []
|
649 |
+
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
|
650 |
+
s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
651 |
+
if pred.shape[0]:
|
652 |
+
for c in pred[:, -1].unique():
|
653 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
654 |
+
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
655 |
+
if show or save or render or crop:
|
656 |
+
annotator = Annotator(im, example=str(self.names))
|
657 |
+
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
658 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
659 |
+
if crop:
|
660 |
+
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
661 |
+
crops.append({
|
662 |
+
'box': box,
|
663 |
+
'conf': conf,
|
664 |
+
'cls': cls,
|
665 |
+
'label': label,
|
666 |
+
'im': save_one_box(box, im, file=file, save=save)})
|
667 |
+
else: # all others
|
668 |
+
annotator.box_label(box, label if labels else '', color=colors(cls))
|
669 |
+
im = annotator.im
|
670 |
+
else:
|
671 |
+
s += '(no detections)'
|
672 |
+
|
673 |
+
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
674 |
+
if pprint:
|
675 |
+
print(s.rstrip(', '))
|
676 |
+
if show:
|
677 |
+
im.show(self.files[i]) # show
|
678 |
+
if save:
|
679 |
+
f = self.files[i]
|
680 |
+
im.save(save_dir / f) # save
|
681 |
+
if i == self.n - 1:
|
682 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
683 |
+
if render:
|
684 |
+
self.imgs[i] = np.asarray(im)
|
685 |
+
if crop:
|
686 |
+
if save:
|
687 |
+
LOGGER.info(f'Saved results to {save_dir}\n')
|
688 |
+
return crops
|
689 |
+
|
690 |
+
def print(self):
|
691 |
+
self.display(pprint=True) # print results
|
692 |
+
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
|
693 |
+
|
694 |
+
def show(self, labels=True):
|
695 |
+
self.display(show=True, labels=labels) # show results
|
696 |
+
|
697 |
+
def save(self, labels=True, save_dir='runs/detect/exp'):
|
698 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
|
699 |
+
self.display(save=True, labels=labels, save_dir=save_dir) # save results
|
700 |
+
|
701 |
+
def crop(self, save=True, save_dir='runs/detect/exp'):
|
702 |
+
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
|
703 |
+
return self.display(crop=True, save=save, save_dir=save_dir) # crop results
|
704 |
+
|
705 |
+
def render(self, labels=True):
|
706 |
+
self.display(render=True, labels=labels) # render results
|
707 |
+
return self.imgs
|
708 |
+
|
709 |
+
def pandas(self):
|
710 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
711 |
+
new = copy(self) # return copy
|
712 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
713 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
714 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
715 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
716 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
717 |
+
return new
|
718 |
+
|
719 |
+
def tolist(self):
|
720 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
721 |
+
r = range(self.n) # iterable
|
722 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
723 |
+
# for d in x:
|
724 |
+
# for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
725 |
+
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
726 |
+
return x
|
727 |
+
|
728 |
+
def __len__(self):
|
729 |
+
return self.n # override len(results)
|
730 |
+
|
731 |
+
def __str__(self):
|
732 |
+
self.print() # override print(results)
|
733 |
+
return ''
|
734 |
+
|
735 |
+
|
736 |
+
class Classify(nn.Module):
|
737 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
738 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
739 |
+
super().__init__()
|
740 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
741 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
742 |
+
self.flat = nn.Flatten()
|
743 |
+
|
744 |
+
def forward(self, x):
|
745 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
746 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
models/experimental.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Experimental modules
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from models.common import Conv
|
12 |
+
from utils.downloads import attempt_download
|
13 |
+
|
14 |
+
|
15 |
+
class Sum(nn.Module):
|
16 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
17 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
18 |
+
super().__init__()
|
19 |
+
self.weight = weight # apply weights boolean
|
20 |
+
self.iter = range(n - 1) # iter object
|
21 |
+
if weight:
|
22 |
+
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
y = x[0] # no weight
|
26 |
+
if self.weight:
|
27 |
+
w = torch.sigmoid(self.w) * 2
|
28 |
+
for i in self.iter:
|
29 |
+
y = y + x[i + 1] * w[i]
|
30 |
+
else:
|
31 |
+
for i in self.iter:
|
32 |
+
y = y + x[i + 1]
|
33 |
+
return y
|
34 |
+
|
35 |
+
|
36 |
+
class MixConv2d(nn.Module):
|
37 |
+
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
38 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
|
39 |
+
super().__init__()
|
40 |
+
n = len(k) # number of convolutions
|
41 |
+
if equal_ch: # equal c_ per group
|
42 |
+
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
|
43 |
+
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
44 |
+
else: # equal weight.numel() per group
|
45 |
+
b = [c2] + [0] * n
|
46 |
+
a = np.eye(n + 1, n, k=-1)
|
47 |
+
a -= np.roll(a, 1, axis=1)
|
48 |
+
a *= np.array(k) ** 2
|
49 |
+
a[0] = 1
|
50 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
51 |
+
|
52 |
+
self.m = nn.ModuleList([
|
53 |
+
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
54 |
+
self.bn = nn.BatchNorm2d(c2)
|
55 |
+
self.act = nn.SiLU()
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
59 |
+
|
60 |
+
|
61 |
+
class Ensemble(nn.ModuleList):
|
62 |
+
# Ensemble of models
|
63 |
+
def __init__(self):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
67 |
+
y = [module(x, augment, profile, visualize)[0] for module in self]
|
68 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
69 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
70 |
+
y = torch.cat(y, 1) # nms ensemble
|
71 |
+
return y, None # inference, train output
|
72 |
+
|
73 |
+
|
74 |
+
def attempt_load(weights, device=None, inplace=True, fuse=True):
|
75 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
76 |
+
from models.yolo import Detect, Model
|
77 |
+
|
78 |
+
model = Ensemble()
|
79 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
80 |
+
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
81 |
+
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
82 |
+
model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
|
83 |
+
|
84 |
+
# Compatibility updates
|
85 |
+
for m in model.modules():
|
86 |
+
t = type(m)
|
87 |
+
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
88 |
+
m.inplace = inplace # torch 1.7.0 compatibility
|
89 |
+
if t is Detect and not isinstance(m.anchor_grid, list):
|
90 |
+
delattr(m, 'anchor_grid')
|
91 |
+
setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
92 |
+
elif t is Conv:
|
93 |
+
m._non_persistent_buffers_set = set() # torch 1.6.0 compatibility
|
94 |
+
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
95 |
+
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
96 |
+
|
97 |
+
if len(model) == 1:
|
98 |
+
return model[-1] # return model
|
99 |
+
print(f'Ensemble created with {weights}\n')
|
100 |
+
for k in 'names', 'nc', 'yaml':
|
101 |
+
setattr(model, k, getattr(model[0], k))
|
102 |
+
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
103 |
+
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
104 |
+
return model # return ensemble
|
models/tf.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
TensorFlow, Keras and TFLite versions of YOLOv5
|
4 |
+
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
|
5 |
+
|
6 |
+
Usage:
|
7 |
+
$ python models/tf.py --weights yolov5s.pt
|
8 |
+
|
9 |
+
Export:
|
10 |
+
$ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
|
11 |
+
"""
|
12 |
+
|
13 |
+
import argparse
|
14 |
+
import sys
|
15 |
+
from copy import deepcopy
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
FILE = Path(__file__).resolve()
|
19 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
20 |
+
if str(ROOT) not in sys.path:
|
21 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
22 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import tensorflow as tf
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
from tensorflow import keras
|
29 |
+
|
30 |
+
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
|
31 |
+
DWConvTranspose2d, Focus, autopad)
|
32 |
+
from models.experimental import MixConv2d, attempt_load
|
33 |
+
from models.yolo import Detect
|
34 |
+
from utils.activations import SiLU
|
35 |
+
from utils.general import LOGGER, make_divisible, print_args
|
36 |
+
|
37 |
+
|
38 |
+
class TFBN(keras.layers.Layer):
|
39 |
+
# TensorFlow BatchNormalization wrapper
|
40 |
+
def __init__(self, w=None):
|
41 |
+
super().__init__()
|
42 |
+
self.bn = keras.layers.BatchNormalization(
|
43 |
+
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
44 |
+
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
45 |
+
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
|
46 |
+
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
|
47 |
+
epsilon=w.eps)
|
48 |
+
|
49 |
+
def call(self, inputs):
|
50 |
+
return self.bn(inputs)
|
51 |
+
|
52 |
+
|
53 |
+
class TFPad(keras.layers.Layer):
|
54 |
+
# Pad inputs in spatial dimensions 1 and 2
|
55 |
+
def __init__(self, pad):
|
56 |
+
super().__init__()
|
57 |
+
if isinstance(pad, int):
|
58 |
+
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
59 |
+
else: # tuple/list
|
60 |
+
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
|
61 |
+
|
62 |
+
def call(self, inputs):
|
63 |
+
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
64 |
+
|
65 |
+
|
66 |
+
class TFConv(keras.layers.Layer):
|
67 |
+
# Standard convolution
|
68 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
69 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
70 |
+
super().__init__()
|
71 |
+
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
72 |
+
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
73 |
+
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
74 |
+
conv = keras.layers.Conv2D(
|
75 |
+
filters=c2,
|
76 |
+
kernel_size=k,
|
77 |
+
strides=s,
|
78 |
+
padding='SAME' if s == 1 else 'VALID',
|
79 |
+
use_bias=not hasattr(w, 'bn'),
|
80 |
+
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
81 |
+
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
82 |
+
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
83 |
+
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
84 |
+
self.act = activations(w.act) if act else tf.identity
|
85 |
+
|
86 |
+
def call(self, inputs):
|
87 |
+
return self.act(self.bn(self.conv(inputs)))
|
88 |
+
|
89 |
+
|
90 |
+
class TFDWConv(keras.layers.Layer):
|
91 |
+
# Depthwise convolution
|
92 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
|
93 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
94 |
+
super().__init__()
|
95 |
+
assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
|
96 |
+
conv = keras.layers.DepthwiseConv2D(
|
97 |
+
kernel_size=k,
|
98 |
+
depth_multiplier=c2 // c1,
|
99 |
+
strides=s,
|
100 |
+
padding='SAME' if s == 1 else 'VALID',
|
101 |
+
use_bias=not hasattr(w, 'bn'),
|
102 |
+
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
103 |
+
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
104 |
+
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
105 |
+
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
106 |
+
self.act = activations(w.act) if act else tf.identity
|
107 |
+
|
108 |
+
def call(self, inputs):
|
109 |
+
return self.act(self.bn(self.conv(inputs)))
|
110 |
+
|
111 |
+
|
112 |
+
class TFDWConvTranspose2d(keras.layers.Layer):
|
113 |
+
# Depthwise ConvTranspose2d
|
114 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
|
115 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
116 |
+
super().__init__()
|
117 |
+
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
|
118 |
+
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
|
119 |
+
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
|
120 |
+
self.c1 = c1
|
121 |
+
self.conv = [
|
122 |
+
keras.layers.Conv2DTranspose(filters=1,
|
123 |
+
kernel_size=k,
|
124 |
+
strides=s,
|
125 |
+
padding='VALID',
|
126 |
+
output_padding=p2,
|
127 |
+
use_bias=True,
|
128 |
+
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
|
129 |
+
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
|
130 |
+
|
131 |
+
def call(self, inputs):
|
132 |
+
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
|
133 |
+
|
134 |
+
|
135 |
+
class TFFocus(keras.layers.Layer):
|
136 |
+
# Focus wh information into c-space
|
137 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
138 |
+
# ch_in, ch_out, kernel, stride, padding, groups
|
139 |
+
super().__init__()
|
140 |
+
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
141 |
+
|
142 |
+
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
143 |
+
# inputs = inputs / 255 # normalize 0-255 to 0-1
|
144 |
+
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
|
145 |
+
return self.conv(tf.concat(inputs, 3))
|
146 |
+
|
147 |
+
|
148 |
+
class TFBottleneck(keras.layers.Layer):
|
149 |
+
# Standard bottleneck
|
150 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
151 |
+
super().__init__()
|
152 |
+
c_ = int(c2 * e) # hidden channels
|
153 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
154 |
+
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
155 |
+
self.add = shortcut and c1 == c2
|
156 |
+
|
157 |
+
def call(self, inputs):
|
158 |
+
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
159 |
+
|
160 |
+
|
161 |
+
class TFCrossConv(keras.layers.Layer):
|
162 |
+
# Cross Convolution
|
163 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
|
164 |
+
super().__init__()
|
165 |
+
c_ = int(c2 * e) # hidden channels
|
166 |
+
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
|
167 |
+
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
|
168 |
+
self.add = shortcut and c1 == c2
|
169 |
+
|
170 |
+
def call(self, inputs):
|
171 |
+
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
172 |
+
|
173 |
+
|
174 |
+
class TFConv2d(keras.layers.Layer):
|
175 |
+
# Substitution for PyTorch nn.Conv2D
|
176 |
+
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
177 |
+
super().__init__()
|
178 |
+
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
179 |
+
self.conv = keras.layers.Conv2D(filters=c2,
|
180 |
+
kernel_size=k,
|
181 |
+
strides=s,
|
182 |
+
padding='VALID',
|
183 |
+
use_bias=bias,
|
184 |
+
kernel_initializer=keras.initializers.Constant(
|
185 |
+
w.weight.permute(2, 3, 1, 0).numpy()),
|
186 |
+
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
|
187 |
+
|
188 |
+
def call(self, inputs):
|
189 |
+
return self.conv(inputs)
|
190 |
+
|
191 |
+
|
192 |
+
class TFBottleneckCSP(keras.layers.Layer):
|
193 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
194 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
195 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
196 |
+
super().__init__()
|
197 |
+
c_ = int(c2 * e) # hidden channels
|
198 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
199 |
+
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
200 |
+
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
201 |
+
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
202 |
+
self.bn = TFBN(w.bn)
|
203 |
+
self.act = lambda x: keras.activations.swish(x)
|
204 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
205 |
+
|
206 |
+
def call(self, inputs):
|
207 |
+
y1 = self.cv3(self.m(self.cv1(inputs)))
|
208 |
+
y2 = self.cv2(inputs)
|
209 |
+
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
210 |
+
|
211 |
+
|
212 |
+
class TFC3(keras.layers.Layer):
|
213 |
+
# CSP Bottleneck with 3 convolutions
|
214 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
215 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
216 |
+
super().__init__()
|
217 |
+
c_ = int(c2 * e) # hidden channels
|
218 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
219 |
+
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
220 |
+
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
221 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
222 |
+
|
223 |
+
def call(self, inputs):
|
224 |
+
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
225 |
+
|
226 |
+
|
227 |
+
class TFC3x(keras.layers.Layer):
|
228 |
+
# 3 module with cross-convolutions
|
229 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
230 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
231 |
+
super().__init__()
|
232 |
+
c_ = int(c2 * e) # hidden channels
|
233 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
234 |
+
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
235 |
+
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
236 |
+
self.m = keras.Sequential([
|
237 |
+
TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
|
238 |
+
|
239 |
+
def call(self, inputs):
|
240 |
+
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
241 |
+
|
242 |
+
|
243 |
+
class TFSPP(keras.layers.Layer):
|
244 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
245 |
+
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
246 |
+
super().__init__()
|
247 |
+
c_ = c1 // 2 # hidden channels
|
248 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
249 |
+
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
250 |
+
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
251 |
+
|
252 |
+
def call(self, inputs):
|
253 |
+
x = self.cv1(inputs)
|
254 |
+
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
255 |
+
|
256 |
+
|
257 |
+
class TFSPPF(keras.layers.Layer):
|
258 |
+
# Spatial pyramid pooling-Fast layer
|
259 |
+
def __init__(self, c1, c2, k=5, w=None):
|
260 |
+
super().__init__()
|
261 |
+
c_ = c1 // 2 # hidden channels
|
262 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
263 |
+
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
|
264 |
+
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
|
265 |
+
|
266 |
+
def call(self, inputs):
|
267 |
+
x = self.cv1(inputs)
|
268 |
+
y1 = self.m(x)
|
269 |
+
y2 = self.m(y1)
|
270 |
+
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
271 |
+
|
272 |
+
|
273 |
+
class TFDetect(keras.layers.Layer):
|
274 |
+
# TF YOLOv5 Detect layer
|
275 |
+
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
276 |
+
super().__init__()
|
277 |
+
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
278 |
+
self.nc = nc # number of classes
|
279 |
+
self.no = nc + 5 # number of outputs per anchor
|
280 |
+
self.nl = len(anchors) # number of detection layers
|
281 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
282 |
+
self.grid = [tf.zeros(1)] * self.nl # init grid
|
283 |
+
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
284 |
+
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
|
285 |
+
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
286 |
+
self.training = False # set to False after building model
|
287 |
+
self.imgsz = imgsz
|
288 |
+
for i in range(self.nl):
|
289 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
290 |
+
self.grid[i] = self._make_grid(nx, ny)
|
291 |
+
|
292 |
+
def call(self, inputs):
|
293 |
+
z = [] # inference output
|
294 |
+
x = []
|
295 |
+
for i in range(self.nl):
|
296 |
+
x.append(self.m[i](inputs[i]))
|
297 |
+
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
298 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
299 |
+
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
|
300 |
+
|
301 |
+
if not self.training: # inference
|
302 |
+
y = tf.sigmoid(x[i])
|
303 |
+
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
|
304 |
+
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
|
305 |
+
xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
|
306 |
+
wh = y[..., 2:4] ** 2 * anchor_grid
|
307 |
+
# Normalize xywh to 0-1 to reduce calibration error
|
308 |
+
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
309 |
+
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
310 |
+
y = tf.concat([xy, wh, y[..., 4:]], -1)
|
311 |
+
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
|
312 |
+
|
313 |
+
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
|
314 |
+
|
315 |
+
@staticmethod
|
316 |
+
def _make_grid(nx=20, ny=20):
|
317 |
+
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
318 |
+
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
319 |
+
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
|
320 |
+
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
321 |
+
|
322 |
+
|
323 |
+
class TFUpsample(keras.layers.Layer):
|
324 |
+
# TF version of torch.nn.Upsample()
|
325 |
+
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
326 |
+
super().__init__()
|
327 |
+
assert scale_factor == 2, "scale_factor must be 2"
|
328 |
+
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
|
329 |
+
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
330 |
+
# with default arguments: align_corners=False, half_pixel_centers=False
|
331 |
+
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
332 |
+
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
333 |
+
|
334 |
+
def call(self, inputs):
|
335 |
+
return self.upsample(inputs)
|
336 |
+
|
337 |
+
|
338 |
+
class TFConcat(keras.layers.Layer):
|
339 |
+
# TF version of torch.concat()
|
340 |
+
def __init__(self, dimension=1, w=None):
|
341 |
+
super().__init__()
|
342 |
+
assert dimension == 1, "convert only NCHW to NHWC concat"
|
343 |
+
self.d = 3
|
344 |
+
|
345 |
+
def call(self, inputs):
|
346 |
+
return tf.concat(inputs, self.d)
|
347 |
+
|
348 |
+
|
349 |
+
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
350 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
351 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
352 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
353 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
354 |
+
|
355 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
356 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
357 |
+
m_str = m
|
358 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
359 |
+
for j, a in enumerate(args):
|
360 |
+
try:
|
361 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
362 |
+
except NameError:
|
363 |
+
pass
|
364 |
+
|
365 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
366 |
+
if m in [
|
367 |
+
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
|
368 |
+
BottleneckCSP, C3, C3x]:
|
369 |
+
c1, c2 = ch[f], args[0]
|
370 |
+
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
371 |
+
|
372 |
+
args = [c1, c2, *args[1:]]
|
373 |
+
if m in [BottleneckCSP, C3, C3x]:
|
374 |
+
args.insert(2, n)
|
375 |
+
n = 1
|
376 |
+
elif m is nn.BatchNorm2d:
|
377 |
+
args = [ch[f]]
|
378 |
+
elif m is Concat:
|
379 |
+
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
380 |
+
elif m is Detect:
|
381 |
+
args.append([ch[x + 1] for x in f])
|
382 |
+
if isinstance(args[1], int): # number of anchors
|
383 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
384 |
+
args.append(imgsz)
|
385 |
+
else:
|
386 |
+
c2 = ch[f]
|
387 |
+
|
388 |
+
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
389 |
+
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
390 |
+
else tf_m(*args, w=model.model[i]) # module
|
391 |
+
|
392 |
+
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
393 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
394 |
+
np = sum(x.numel() for x in torch_m_.parameters()) # number params
|
395 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
396 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
|
397 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
398 |
+
layers.append(m_)
|
399 |
+
ch.append(c2)
|
400 |
+
return keras.Sequential(layers), sorted(save)
|
401 |
+
|
402 |
+
|
403 |
+
class TFModel:
|
404 |
+
# TF YOLOv5 model
|
405 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
406 |
+
super().__init__()
|
407 |
+
if isinstance(cfg, dict):
|
408 |
+
self.yaml = cfg # model dict
|
409 |
+
else: # is *.yaml
|
410 |
+
import yaml # for torch hub
|
411 |
+
self.yaml_file = Path(cfg).name
|
412 |
+
with open(cfg) as f:
|
413 |
+
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
414 |
+
|
415 |
+
# Define model
|
416 |
+
if nc and nc != self.yaml['nc']:
|
417 |
+
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
|
418 |
+
self.yaml['nc'] = nc # override yaml value
|
419 |
+
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
420 |
+
|
421 |
+
def predict(self,
|
422 |
+
inputs,
|
423 |
+
tf_nms=False,
|
424 |
+
agnostic_nms=False,
|
425 |
+
topk_per_class=100,
|
426 |
+
topk_all=100,
|
427 |
+
iou_thres=0.45,
|
428 |
+
conf_thres=0.25):
|
429 |
+
y = [] # outputs
|
430 |
+
x = inputs
|
431 |
+
for m in self.model.layers:
|
432 |
+
if m.f != -1: # if not from previous layer
|
433 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
434 |
+
|
435 |
+
x = m(x) # run
|
436 |
+
y.append(x if m.i in self.savelist else None) # save output
|
437 |
+
|
438 |
+
# Add TensorFlow NMS
|
439 |
+
if tf_nms:
|
440 |
+
boxes = self._xywh2xyxy(x[0][..., :4])
|
441 |
+
probs = x[0][:, :, 4:5]
|
442 |
+
classes = x[0][:, :, 5:]
|
443 |
+
scores = probs * classes
|
444 |
+
if agnostic_nms:
|
445 |
+
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
446 |
+
else:
|
447 |
+
boxes = tf.expand_dims(boxes, 2)
|
448 |
+
nms = tf.image.combined_non_max_suppression(boxes,
|
449 |
+
scores,
|
450 |
+
topk_per_class,
|
451 |
+
topk_all,
|
452 |
+
iou_thres,
|
453 |
+
conf_thres,
|
454 |
+
clip_boxes=False)
|
455 |
+
return nms, x[1]
|
456 |
+
return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
|
457 |
+
# x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
|
458 |
+
# xywh = x[..., :4] # x(6300,4) boxes
|
459 |
+
# conf = x[..., 4:5] # x(6300,1) confidences
|
460 |
+
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
461 |
+
# return tf.concat([conf, cls, xywh], 1)
|
462 |
+
|
463 |
+
@staticmethod
|
464 |
+
def _xywh2xyxy(xywh):
|
465 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
466 |
+
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
467 |
+
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
468 |
+
|
469 |
+
|
470 |
+
class AgnosticNMS(keras.layers.Layer):
|
471 |
+
# TF Agnostic NMS
|
472 |
+
def call(self, input, topk_all, iou_thres, conf_thres):
|
473 |
+
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
474 |
+
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
|
475 |
+
input,
|
476 |
+
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
477 |
+
name='agnostic_nms')
|
478 |
+
|
479 |
+
@staticmethod
|
480 |
+
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
481 |
+
boxes, classes, scores = x
|
482 |
+
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
483 |
+
scores_inp = tf.reduce_max(scores, -1)
|
484 |
+
selected_inds = tf.image.non_max_suppression(boxes,
|
485 |
+
scores_inp,
|
486 |
+
max_output_size=topk_all,
|
487 |
+
iou_threshold=iou_thres,
|
488 |
+
score_threshold=conf_thres)
|
489 |
+
selected_boxes = tf.gather(boxes, selected_inds)
|
490 |
+
padded_boxes = tf.pad(selected_boxes,
|
491 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
492 |
+
mode="CONSTANT",
|
493 |
+
constant_values=0.0)
|
494 |
+
selected_scores = tf.gather(scores_inp, selected_inds)
|
495 |
+
padded_scores = tf.pad(selected_scores,
|
496 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
497 |
+
mode="CONSTANT",
|
498 |
+
constant_values=-1.0)
|
499 |
+
selected_classes = tf.gather(class_inds, selected_inds)
|
500 |
+
padded_classes = tf.pad(selected_classes,
|
501 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
502 |
+
mode="CONSTANT",
|
503 |
+
constant_values=-1.0)
|
504 |
+
valid_detections = tf.shape(selected_inds)[0]
|
505 |
+
return padded_boxes, padded_scores, padded_classes, valid_detections
|
506 |
+
|
507 |
+
|
508 |
+
def activations(act=nn.SiLU):
|
509 |
+
# Returns TF activation from input PyTorch activation
|
510 |
+
if isinstance(act, nn.LeakyReLU):
|
511 |
+
return lambda x: keras.activations.relu(x, alpha=0.1)
|
512 |
+
elif isinstance(act, nn.Hardswish):
|
513 |
+
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
|
514 |
+
elif isinstance(act, (nn.SiLU, SiLU)):
|
515 |
+
return lambda x: keras.activations.swish(x)
|
516 |
+
else:
|
517 |
+
raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
|
518 |
+
|
519 |
+
|
520 |
+
def representative_dataset_gen(dataset, ncalib=100):
|
521 |
+
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
522 |
+
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
523 |
+
im = np.transpose(img, [1, 2, 0])
|
524 |
+
im = np.expand_dims(im, axis=0).astype(np.float32)
|
525 |
+
im /= 255
|
526 |
+
yield [im]
|
527 |
+
if n >= ncalib:
|
528 |
+
break
|
529 |
+
|
530 |
+
|
531 |
+
def run(
|
532 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
533 |
+
imgsz=(640, 640), # inference size h,w
|
534 |
+
batch_size=1, # batch size
|
535 |
+
dynamic=False, # dynamic batch size
|
536 |
+
):
|
537 |
+
# PyTorch model
|
538 |
+
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
539 |
+
model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
|
540 |
+
_ = model(im) # inference
|
541 |
+
model.info()
|
542 |
+
|
543 |
+
# TensorFlow model
|
544 |
+
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
545 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
546 |
+
_ = tf_model.predict(im) # inference
|
547 |
+
|
548 |
+
# Keras model
|
549 |
+
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
550 |
+
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
551 |
+
keras_model.summary()
|
552 |
+
|
553 |
+
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
|
554 |
+
|
555 |
+
|
556 |
+
def parse_opt():
|
557 |
+
parser = argparse.ArgumentParser()
|
558 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
559 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
560 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
561 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
562 |
+
opt = parser.parse_args()
|
563 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
564 |
+
print_args(vars(opt))
|
565 |
+
return opt
|
566 |
+
|
567 |
+
|
568 |
+
def main(opt):
|
569 |
+
run(**vars(opt))
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
opt = parse_opt()
|
574 |
+
main(opt)
|
models/yolo.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
YOLO-specific modules
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
$ python path/to/models/yolo.py --cfg yolov5s.yaml
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import os
|
11 |
+
import platform
|
12 |
+
import sys
|
13 |
+
from copy import deepcopy
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
FILE = Path(__file__).resolve()
|
17 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
18 |
+
if str(ROOT) not in sys.path:
|
19 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
20 |
+
if platform.system() != 'Windows':
|
21 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
22 |
+
|
23 |
+
from models.common import *
|
24 |
+
from models.experimental import *
|
25 |
+
from utils.autoanchor import check_anchor_order
|
26 |
+
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
27 |
+
from utils.plots import feature_visualization
|
28 |
+
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
|
29 |
+
time_sync)
|
30 |
+
|
31 |
+
try:
|
32 |
+
import thop # for FLOPs computation
|
33 |
+
except ImportError:
|
34 |
+
thop = None
|
35 |
+
|
36 |
+
|
37 |
+
class Detect(nn.Module):
|
38 |
+
stride = None # strides computed during build
|
39 |
+
onnx_dynamic = False # ONNX export parameter
|
40 |
+
export = False # export mode
|
41 |
+
|
42 |
+
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
|
43 |
+
super().__init__()
|
44 |
+
self.nc = nc # number of classes
|
45 |
+
self.no = nc + 5 # number of outputs per anchor
|
46 |
+
self.nl = len(anchors) # number of detection layers
|
47 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
48 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
49 |
+
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
|
50 |
+
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
|
51 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
52 |
+
self.inplace = inplace # use in-place ops (e.g. slice assignment)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
z = [] # inference output
|
56 |
+
for i in range(self.nl):
|
57 |
+
x[i] = self.m[i](x[i]) # conv
|
58 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
59 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
60 |
+
|
61 |
+
if not self.training: # inference
|
62 |
+
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
63 |
+
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
|
64 |
+
|
65 |
+
y = x[i].sigmoid()
|
66 |
+
if self.inplace:
|
67 |
+
y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy
|
68 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
69 |
+
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
|
70 |
+
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
|
71 |
+
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
|
72 |
+
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
|
73 |
+
y = torch.cat((xy, wh, conf), 4)
|
74 |
+
z.append(y.view(bs, -1, self.no))
|
75 |
+
|
76 |
+
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
|
77 |
+
|
78 |
+
def _make_grid(self, nx=20, ny=20, i=0):
|
79 |
+
d = self.anchors[i].device
|
80 |
+
t = self.anchors[i].dtype
|
81 |
+
shape = 1, self.na, ny, nx, 2 # grid shape
|
82 |
+
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
|
83 |
+
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
|
84 |
+
yv, xv = torch.meshgrid(y, x, indexing='ij')
|
85 |
+
else:
|
86 |
+
yv, xv = torch.meshgrid(y, x)
|
87 |
+
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
|
88 |
+
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
|
89 |
+
return grid, anchor_grid
|
90 |
+
|
91 |
+
|
92 |
+
class Model(nn.Module):
|
93 |
+
# YOLOv5 model
|
94 |
+
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
95 |
+
super().__init__()
|
96 |
+
if isinstance(cfg, dict):
|
97 |
+
self.yaml = cfg # model dict
|
98 |
+
else: # is *.yaml
|
99 |
+
import yaml # for torch hub
|
100 |
+
self.yaml_file = Path(cfg).name
|
101 |
+
with open(cfg, encoding='ascii', errors='ignore') as f:
|
102 |
+
self.yaml = yaml.safe_load(f) # model dict
|
103 |
+
|
104 |
+
# Define model
|
105 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
106 |
+
if nc and nc != self.yaml['nc']:
|
107 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
108 |
+
self.yaml['nc'] = nc # override yaml value
|
109 |
+
if anchors:
|
110 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
111 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
112 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
113 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
114 |
+
self.inplace = self.yaml.get('inplace', True)
|
115 |
+
|
116 |
+
# Build strides, anchors
|
117 |
+
m = self.model[-1] # Detect()
|
118 |
+
if isinstance(m, Detect):
|
119 |
+
s = 256 # 2x min stride
|
120 |
+
m.inplace = self.inplace
|
121 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
122 |
+
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
123 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
124 |
+
self.stride = m.stride
|
125 |
+
self._initialize_biases() # only run once
|
126 |
+
|
127 |
+
# Init weights, biases
|
128 |
+
initialize_weights(self)
|
129 |
+
self.info()
|
130 |
+
LOGGER.info('')
|
131 |
+
|
132 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
133 |
+
if augment:
|
134 |
+
return self._forward_augment(x) # augmented inference, None
|
135 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
136 |
+
|
137 |
+
def _forward_augment(self, x):
|
138 |
+
img_size = x.shape[-2:] # height, width
|
139 |
+
s = [1, 0.83, 0.67] # scales
|
140 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
141 |
+
y = [] # outputs
|
142 |
+
for si, fi in zip(s, f):
|
143 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
144 |
+
yi = self._forward_once(xi)[0] # forward
|
145 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
146 |
+
yi = self._descale_pred(yi, fi, si, img_size)
|
147 |
+
y.append(yi)
|
148 |
+
y = self._clip_augmented(y) # clip augmented tails
|
149 |
+
return torch.cat(y, 1), None # augmented inference, train
|
150 |
+
|
151 |
+
def _forward_once(self, x, profile=False, visualize=False):
|
152 |
+
y, dt = [], [] # outputs
|
153 |
+
for m in self.model:
|
154 |
+
if m.f != -1: # if not from previous layer
|
155 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
156 |
+
if profile:
|
157 |
+
self._profile_one_layer(m, x, dt)
|
158 |
+
x = m(x) # run
|
159 |
+
y.append(x if m.i in self.save else None) # save output
|
160 |
+
if visualize:
|
161 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
162 |
+
return x
|
163 |
+
|
164 |
+
def _descale_pred(self, p, flips, scale, img_size):
|
165 |
+
# de-scale predictions following augmented inference (inverse operation)
|
166 |
+
if self.inplace:
|
167 |
+
p[..., :4] /= scale # de-scale
|
168 |
+
if flips == 2:
|
169 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
170 |
+
elif flips == 3:
|
171 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
172 |
+
else:
|
173 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
174 |
+
if flips == 2:
|
175 |
+
y = img_size[0] - y # de-flip ud
|
176 |
+
elif flips == 3:
|
177 |
+
x = img_size[1] - x # de-flip lr
|
178 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
179 |
+
return p
|
180 |
+
|
181 |
+
def _clip_augmented(self, y):
|
182 |
+
# Clip YOLOv5 augmented inference tails
|
183 |
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
184 |
+
g = sum(4 ** x for x in range(nl)) # grid points
|
185 |
+
e = 1 # exclude layer count
|
186 |
+
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
187 |
+
y[0] = y[0][:, :-i] # large
|
188 |
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
189 |
+
y[-1] = y[-1][:, i:] # small
|
190 |
+
return y
|
191 |
+
|
192 |
+
def _profile_one_layer(self, m, x, dt):
|
193 |
+
c = isinstance(m, Detect) # is final layer, copy input as inplace fix
|
194 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
195 |
+
t = time_sync()
|
196 |
+
for _ in range(10):
|
197 |
+
m(x.copy() if c else x)
|
198 |
+
dt.append((time_sync() - t) * 100)
|
199 |
+
if m == self.model[0]:
|
200 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
201 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
202 |
+
if c:
|
203 |
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
204 |
+
|
205 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
206 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
207 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
208 |
+
m = self.model[-1] # Detect() module
|
209 |
+
for mi, s in zip(m.m, m.stride): # from
|
210 |
+
b = mi.bias.view(m.na, -1).detach() # conv.bias(255) to (3,85)
|
211 |
+
b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
212 |
+
b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
213 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
214 |
+
|
215 |
+
def _print_biases(self):
|
216 |
+
m = self.model[-1] # Detect() module
|
217 |
+
for mi in m.m: # from
|
218 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
219 |
+
LOGGER.info(
|
220 |
+
('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
221 |
+
|
222 |
+
# def _print_weights(self):
|
223 |
+
# for m in self.model.modules():
|
224 |
+
# if type(m) is Bottleneck:
|
225 |
+
# LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
226 |
+
|
227 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
228 |
+
LOGGER.info('Fusing layers... ')
|
229 |
+
for m in self.model.modules():
|
230 |
+
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
231 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
232 |
+
delattr(m, 'bn') # remove batchnorm
|
233 |
+
m.forward = m.forward_fuse # update forward
|
234 |
+
self.info()
|
235 |
+
return self
|
236 |
+
|
237 |
+
def info(self, verbose=False, img_size=640): # print model information
|
238 |
+
model_info(self, verbose, img_size)
|
239 |
+
|
240 |
+
def _apply(self, fn):
|
241 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
242 |
+
self = super()._apply(fn)
|
243 |
+
m = self.model[-1] # Detect()
|
244 |
+
if isinstance(m, Detect):
|
245 |
+
m.stride = fn(m.stride)
|
246 |
+
m.grid = list(map(fn, m.grid))
|
247 |
+
if isinstance(m.anchor_grid, list):
|
248 |
+
m.anchor_grid = list(map(fn, m.anchor_grid))
|
249 |
+
return self
|
250 |
+
|
251 |
+
|
252 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
253 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
254 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
255 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
256 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
257 |
+
|
258 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
259 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
260 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
261 |
+
for j, a in enumerate(args):
|
262 |
+
try:
|
263 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
264 |
+
except NameError:
|
265 |
+
pass
|
266 |
+
|
267 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
268 |
+
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
|
269 |
+
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
|
270 |
+
c1, c2 = ch[f], args[0]
|
271 |
+
if c2 != no: # if not output
|
272 |
+
c2 = make_divisible(c2 * gw, 8)
|
273 |
+
|
274 |
+
args = [c1, c2, *args[1:]]
|
275 |
+
if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:
|
276 |
+
args.insert(2, n) # number of repeats
|
277 |
+
n = 1
|
278 |
+
elif m is nn.BatchNorm2d:
|
279 |
+
args = [ch[f]]
|
280 |
+
elif m is Concat:
|
281 |
+
c2 = sum(ch[x] for x in f)
|
282 |
+
elif m is Detect:
|
283 |
+
args.append([ch[x] for x in f])
|
284 |
+
if isinstance(args[1], int): # number of anchors
|
285 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
286 |
+
elif m is Contract:
|
287 |
+
c2 = ch[f] * args[0] ** 2
|
288 |
+
elif m is Expand:
|
289 |
+
c2 = ch[f] // args[0] ** 2
|
290 |
+
else:
|
291 |
+
c2 = ch[f]
|
292 |
+
|
293 |
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
294 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
295 |
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
296 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
297 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
298 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
299 |
+
layers.append(m_)
|
300 |
+
if i == 0:
|
301 |
+
ch = []
|
302 |
+
ch.append(c2)
|
303 |
+
return nn.Sequential(*layers), sorted(save)
|
304 |
+
|
305 |
+
|
306 |
+
if __name__ == '__main__':
|
307 |
+
parser = argparse.ArgumentParser()
|
308 |
+
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
309 |
+
parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
|
310 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
311 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
312 |
+
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
|
313 |
+
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
314 |
+
opt = parser.parse_args()
|
315 |
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
316 |
+
print_args(vars(opt))
|
317 |
+
device = select_device(opt.device)
|
318 |
+
|
319 |
+
# Create model
|
320 |
+
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
321 |
+
model = Model(opt.cfg).to(device)
|
322 |
+
|
323 |
+
# Options
|
324 |
+
if opt.line_profile: # profile layer by layer
|
325 |
+
_ = model(im, profile=True)
|
326 |
+
|
327 |
+
elif opt.profile: # profile forward-backward
|
328 |
+
results = profile(input=im, ops=[model], n=3)
|
329 |
+
|
330 |
+
elif opt.test: # test all models
|
331 |
+
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
332 |
+
try:
|
333 |
+
_ = Model(cfg)
|
334 |
+
except Exception as e:
|
335 |
+
print(f'Error in {cfg}: {e}')
|
336 |
+
|
337 |
+
else: # report fused model summary
|
338 |
+
model.fuse()
|
requirements.txt
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 参考:https://github.com/ultralytics/yolov5/blob/master/requirements.txt
|
2 |
+
# pip install -r requirements.txt
|
3 |
+
# pip 22.1.2
|
4 |
+
|
5 |
+
# Base ----------------------------------------
|
6 |
+
matplotlib==3.5.2
|
7 |
+
numpy==1.19.5
|
8 |
+
opencv-python==4.5.5.64
|
9 |
+
Pillow==9.2.0
|
10 |
+
PyYAML==6.0
|
11 |
+
requests==2.28.1
|
12 |
+
scipy==1.5.4 # Google Colab version
|
13 |
+
torch==1.11.0 # https://github.com/ultralytics/yolov5/issues/8395
|
14 |
+
torchvision>=0.12.0 # https://github.com/ultralytics/yolov5/issues/8395
|
15 |
+
tqdm==4.64.0
|
16 |
+
protobuf==3.19.4 # https://github.com/ultralytics/yolov5/issues/8012
|
17 |
+
|
18 |
+
|
19 |
+
# Streamlit YOLOv5 Model2X
|
20 |
+
streamlit==1.10.0
|
21 |
+
|
22 |
+
|
23 |
+
# Logging -------------------------------------
|
24 |
+
tensorboard==2.9.1
|
25 |
+
# wandb
|
26 |
+
|
27 |
+
# Plotting ------------------------------------
|
28 |
+
pandas==1.1.5
|
29 |
+
seaborn==0.11.2
|
30 |
+
|
31 |
+
# Export --------------------------------------
|
32 |
+
coremltools==5.2.0 # CoreML export
|
33 |
+
onnx==1.12.0 # ONNX export
|
34 |
+
onnx-simplifier==0.4.0 # ONNX simplifier
|
35 |
+
onnxruntime-gpu==1.11.1
|
36 |
+
nvidia-pyindex==1.0.9
|
37 |
+
nvidia-tensorrt==8.4.1.5
|
38 |
+
scikit-learn==0.24.2 # CoreML quantization
|
39 |
+
tensorflow==2.4.1 # TFLite export
|
40 |
+
tensorflowjs==3.18.0 # TF.js export
|
41 |
+
openvino-dev==2022.1.0 # OpenVINO export
|
42 |
+
|
43 |
+
# Extras --------------------------------------
|
44 |
+
ipython==8.4.0 # interactive notebook
|
45 |
+
psutil==5.9.1 # system utilization
|
46 |
+
thop==0.1.0.post2207010342 # FLOPs computation
|
47 |
+
# albumentations>=1.0.3
|
48 |
+
# pycocotools>=2.0 # COCO mAP
|
49 |
+
# roboflow
|
utils/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
utils/initialization
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
def notebook_init(verbose=True):
|
8 |
+
# Check system software and hardware
|
9 |
+
print('Checking setup...')
|
10 |
+
|
11 |
+
import os
|
12 |
+
import shutil
|
13 |
+
|
14 |
+
from utils.general import check_requirements, emojis, is_colab
|
15 |
+
from utils.torch_utils import select_device # imports
|
16 |
+
|
17 |
+
check_requirements(('psutil', 'IPython'))
|
18 |
+
import psutil
|
19 |
+
from IPython import display # to display images and clear console output
|
20 |
+
|
21 |
+
if is_colab():
|
22 |
+
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
23 |
+
|
24 |
+
# System info
|
25 |
+
if verbose:
|
26 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
27 |
+
ram = psutil.virtual_memory().total
|
28 |
+
total, used, free = shutil.disk_usage("/")
|
29 |
+
display.clear_output()
|
30 |
+
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
31 |
+
else:
|
32 |
+
s = ''
|
33 |
+
|
34 |
+
select_device(newline=False)
|
35 |
+
print(emojis(f'Setup complete ✅ {s}'))
|
36 |
+
return display
|
utils/activations.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Activation functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class SiLU(nn.Module):
|
12 |
+
# SiLU activation https://arxiv.org/pdf/1606.08415.pdf
|
13 |
+
@staticmethod
|
14 |
+
def forward(x):
|
15 |
+
return x * torch.sigmoid(x)
|
16 |
+
|
17 |
+
|
18 |
+
class Hardswish(nn.Module):
|
19 |
+
# Hard-SiLU activation
|
20 |
+
@staticmethod
|
21 |
+
def forward(x):
|
22 |
+
# return x * F.hardsigmoid(x) # for TorchScript and CoreML
|
23 |
+
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX
|
24 |
+
|
25 |
+
|
26 |
+
class Mish(nn.Module):
|
27 |
+
# Mish activation https://github.com/digantamisra98/Mish
|
28 |
+
@staticmethod
|
29 |
+
def forward(x):
|
30 |
+
return x * F.softplus(x).tanh()
|
31 |
+
|
32 |
+
|
33 |
+
class MemoryEfficientMish(nn.Module):
|
34 |
+
# Mish activation memory-efficient
|
35 |
+
class F(torch.autograd.Function):
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def forward(ctx, x):
|
39 |
+
ctx.save_for_backward(x)
|
40 |
+
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
41 |
+
|
42 |
+
@staticmethod
|
43 |
+
def backward(ctx, grad_output):
|
44 |
+
x = ctx.saved_tensors[0]
|
45 |
+
sx = torch.sigmoid(x)
|
46 |
+
fx = F.softplus(x).tanh()
|
47 |
+
return grad_output * (fx + x * sx * (1 - fx * fx))
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.F.apply(x)
|
51 |
+
|
52 |
+
|
53 |
+
class FReLU(nn.Module):
|
54 |
+
# FReLU activation https://arxiv.org/abs/2007.11824
|
55 |
+
def __init__(self, c1, k=3): # ch_in, kernel
|
56 |
+
super().__init__()
|
57 |
+
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
58 |
+
self.bn = nn.BatchNorm2d(c1)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
return torch.max(x, self.bn(self.conv(x)))
|
62 |
+
|
63 |
+
|
64 |
+
class AconC(nn.Module):
|
65 |
+
r""" ACON activation (activate or not)
|
66 |
+
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
|
67 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, c1):
|
71 |
+
super().__init__()
|
72 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
73 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
74 |
+
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
dpx = (self.p1 - self.p2) * x
|
78 |
+
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
|
79 |
+
|
80 |
+
|
81 |
+
class MetaAconC(nn.Module):
|
82 |
+
r""" ACON activation (activate or not)
|
83 |
+
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
|
84 |
+
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
|
88 |
+
super().__init__()
|
89 |
+
c2 = max(r, c1 // r)
|
90 |
+
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
91 |
+
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
|
92 |
+
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
|
93 |
+
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
|
94 |
+
# self.bn1 = nn.BatchNorm2d(c2)
|
95 |
+
# self.bn2 = nn.BatchNorm2d(c1)
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
|
99 |
+
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
|
100 |
+
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
|
101 |
+
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
|
102 |
+
dpx = (self.p1 - self.p2) * x
|
103 |
+
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
|
utils/augmentations.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Image augmentation functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import random
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
|
13 |
+
from utils.metrics import bbox_ioa
|
14 |
+
|
15 |
+
|
16 |
+
class Albumentations:
|
17 |
+
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
18 |
+
def __init__(self):
|
19 |
+
self.transform = None
|
20 |
+
try:
|
21 |
+
import albumentations as A
|
22 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
23 |
+
|
24 |
+
T = [
|
25 |
+
A.Blur(p=0.01),
|
26 |
+
A.MedianBlur(p=0.01),
|
27 |
+
A.ToGray(p=0.01),
|
28 |
+
A.CLAHE(p=0.01),
|
29 |
+
A.RandomBrightnessContrast(p=0.0),
|
30 |
+
A.RandomGamma(p=0.0),
|
31 |
+
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
32 |
+
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
33 |
+
|
34 |
+
LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
|
35 |
+
except ImportError: # package not installed, skip
|
36 |
+
pass
|
37 |
+
except Exception as e:
|
38 |
+
LOGGER.info(colorstr('albumentations: ') + f'{e}')
|
39 |
+
|
40 |
+
def __call__(self, im, labels, p=1.0):
|
41 |
+
if self.transform and random.random() < p:
|
42 |
+
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
43 |
+
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
44 |
+
return im, labels
|
45 |
+
|
46 |
+
|
47 |
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
48 |
+
# HSV color-space augmentation
|
49 |
+
if hgain or sgain or vgain:
|
50 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
51 |
+
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
52 |
+
dtype = im.dtype # uint8
|
53 |
+
|
54 |
+
x = np.arange(0, 256, dtype=r.dtype)
|
55 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
56 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
57 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
58 |
+
|
59 |
+
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
60 |
+
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
61 |
+
|
62 |
+
|
63 |
+
def hist_equalize(im, clahe=True, bgr=False):
|
64 |
+
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
65 |
+
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
66 |
+
if clahe:
|
67 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
68 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
69 |
+
else:
|
70 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
71 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
72 |
+
|
73 |
+
|
74 |
+
def replicate(im, labels):
|
75 |
+
# Replicate labels
|
76 |
+
h, w = im.shape[:2]
|
77 |
+
boxes = labels[:, 1:].astype(int)
|
78 |
+
x1, y1, x2, y2 = boxes.T
|
79 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
80 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
81 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
82 |
+
bh, bw = y2b - y1b, x2b - x1b
|
83 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
84 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
85 |
+
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
86 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
87 |
+
|
88 |
+
return im, labels
|
89 |
+
|
90 |
+
|
91 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
92 |
+
# Resize and pad image while meeting stride-multiple constraints
|
93 |
+
shape = im.shape[:2] # current shape [height, width]
|
94 |
+
if isinstance(new_shape, int):
|
95 |
+
new_shape = (new_shape, new_shape)
|
96 |
+
|
97 |
+
# Scale ratio (new / old)
|
98 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
99 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
100 |
+
r = min(r, 1.0)
|
101 |
+
|
102 |
+
# Compute padding
|
103 |
+
ratio = r, r # width, height ratios
|
104 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
105 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
106 |
+
if auto: # minimum rectangle
|
107 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
108 |
+
elif scaleFill: # stretch
|
109 |
+
dw, dh = 0.0, 0.0
|
110 |
+
new_unpad = (new_shape[1], new_shape[0])
|
111 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
112 |
+
|
113 |
+
dw /= 2 # divide padding into 2 sides
|
114 |
+
dh /= 2
|
115 |
+
|
116 |
+
if shape[::-1] != new_unpad: # resize
|
117 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
118 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
119 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
120 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
121 |
+
return im, ratio, (dw, dh)
|
122 |
+
|
123 |
+
|
124 |
+
def random_perspective(im,
|
125 |
+
targets=(),
|
126 |
+
segments=(),
|
127 |
+
degrees=10,
|
128 |
+
translate=.1,
|
129 |
+
scale=.1,
|
130 |
+
shear=10,
|
131 |
+
perspective=0.0,
|
132 |
+
border=(0, 0)):
|
133 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
134 |
+
# targets = [cls, xyxy]
|
135 |
+
|
136 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
137 |
+
width = im.shape[1] + border[1] * 2
|
138 |
+
|
139 |
+
# Center
|
140 |
+
C = np.eye(3)
|
141 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
142 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
143 |
+
|
144 |
+
# Perspective
|
145 |
+
P = np.eye(3)
|
146 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
147 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
148 |
+
|
149 |
+
# Rotation and Scale
|
150 |
+
R = np.eye(3)
|
151 |
+
a = random.uniform(-degrees, degrees)
|
152 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
153 |
+
s = random.uniform(1 - scale, 1 + scale)
|
154 |
+
# s = 2 ** random.uniform(-scale, scale)
|
155 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
156 |
+
|
157 |
+
# Shear
|
158 |
+
S = np.eye(3)
|
159 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
160 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
161 |
+
|
162 |
+
# Translation
|
163 |
+
T = np.eye(3)
|
164 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
165 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
166 |
+
|
167 |
+
# Combined rotation matrix
|
168 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
169 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
170 |
+
if perspective:
|
171 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
172 |
+
else: # affine
|
173 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
174 |
+
|
175 |
+
# Visualize
|
176 |
+
# import matplotlib.pyplot as plt
|
177 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
178 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
179 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
180 |
+
|
181 |
+
# Transform label coordinates
|
182 |
+
n = len(targets)
|
183 |
+
if n:
|
184 |
+
use_segments = any(x.any() for x in segments)
|
185 |
+
new = np.zeros((n, 4))
|
186 |
+
if use_segments: # warp segments
|
187 |
+
segments = resample_segments(segments) # upsample
|
188 |
+
for i, segment in enumerate(segments):
|
189 |
+
xy = np.ones((len(segment), 3))
|
190 |
+
xy[:, :2] = segment
|
191 |
+
xy = xy @ M.T # transform
|
192 |
+
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
193 |
+
|
194 |
+
# clip
|
195 |
+
new[i] = segment2box(xy, width, height)
|
196 |
+
|
197 |
+
else: # warp boxes
|
198 |
+
xy = np.ones((n * 4, 3))
|
199 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
200 |
+
xy = xy @ M.T # transform
|
201 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
202 |
+
|
203 |
+
# create new boxes
|
204 |
+
x = xy[:, [0, 2, 4, 6]]
|
205 |
+
y = xy[:, [1, 3, 5, 7]]
|
206 |
+
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
207 |
+
|
208 |
+
# clip
|
209 |
+
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
210 |
+
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
211 |
+
|
212 |
+
# filter candidates
|
213 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
214 |
+
targets = targets[i]
|
215 |
+
targets[:, 1:5] = new[i]
|
216 |
+
|
217 |
+
return im, targets
|
218 |
+
|
219 |
+
|
220 |
+
def copy_paste(im, labels, segments, p=0.5):
|
221 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
222 |
+
n = len(segments)
|
223 |
+
if p and n:
|
224 |
+
h, w, c = im.shape # height, width, channels
|
225 |
+
im_new = np.zeros(im.shape, np.uint8)
|
226 |
+
for j in random.sample(range(n), k=round(p * n)):
|
227 |
+
l, s = labels[j], segments[j]
|
228 |
+
box = w - l[3], l[2], w - l[1], l[4]
|
229 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
230 |
+
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
231 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
232 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
233 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
|
234 |
+
|
235 |
+
result = cv2.bitwise_and(src1=im, src2=im_new)
|
236 |
+
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
237 |
+
i = result > 0 # pixels to replace
|
238 |
+
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
239 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
240 |
+
|
241 |
+
return im, labels, segments
|
242 |
+
|
243 |
+
|
244 |
+
def cutout(im, labels, p=0.5):
|
245 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
246 |
+
if random.random() < p:
|
247 |
+
h, w = im.shape[:2]
|
248 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
249 |
+
for s in scales:
|
250 |
+
mask_h = random.randint(1, int(h * s)) # create random masks
|
251 |
+
mask_w = random.randint(1, int(w * s))
|
252 |
+
|
253 |
+
# box
|
254 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
255 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
256 |
+
xmax = min(w, xmin + mask_w)
|
257 |
+
ymax = min(h, ymin + mask_h)
|
258 |
+
|
259 |
+
# apply random color mask
|
260 |
+
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
261 |
+
|
262 |
+
# return unobscured labels
|
263 |
+
if len(labels) and s > 0.03:
|
264 |
+
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
265 |
+
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
|
266 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
267 |
+
|
268 |
+
return labels
|
269 |
+
|
270 |
+
|
271 |
+
def mixup(im, labels, im2, labels2):
|
272 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
273 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
274 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
275 |
+
labels = np.concatenate((labels, labels2), 0)
|
276 |
+
return im, labels
|
277 |
+
|
278 |
+
|
279 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
280 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
281 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
282 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
283 |
+
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
284 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
utils/autoanchor.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
AutoAnchor utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import random
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import yaml
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from utils.general import LOGGER, colorstr, emojis
|
14 |
+
|
15 |
+
PREFIX = colorstr('AutoAnchor: ')
|
16 |
+
|
17 |
+
|
18 |
+
def check_anchor_order(m):
|
19 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
20 |
+
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
21 |
+
da = a[-1] - a[0] # delta a
|
22 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
23 |
+
if da and (da.sign() != ds.sign()): # same order
|
24 |
+
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
25 |
+
m.anchors[:] = m.anchors.flip(0)
|
26 |
+
|
27 |
+
|
28 |
+
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
29 |
+
# Check anchor fit to data, recompute if necessary
|
30 |
+
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
31 |
+
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
32 |
+
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
33 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
34 |
+
|
35 |
+
def metric(k): # compute metric
|
36 |
+
r = wh[:, None] / k[None]
|
37 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
38 |
+
best = x.max(1)[0] # best_x
|
39 |
+
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
40 |
+
bpr = (best > 1 / thr).float().mean() # best possible recall
|
41 |
+
return bpr, aat
|
42 |
+
|
43 |
+
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
44 |
+
anchors = m.anchors.clone() * stride # current anchors
|
45 |
+
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
46 |
+
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
47 |
+
if bpr > 0.98: # threshold to recompute
|
48 |
+
LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
|
49 |
+
else:
|
50 |
+
LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...'))
|
51 |
+
na = m.anchors.numel() // 2 # number of anchors
|
52 |
+
try:
|
53 |
+
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
54 |
+
except Exception as e:
|
55 |
+
LOGGER.info(f'{PREFIX}ERROR: {e}')
|
56 |
+
new_bpr = metric(anchors)[0]
|
57 |
+
if new_bpr > bpr: # replace anchors
|
58 |
+
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
59 |
+
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
60 |
+
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
61 |
+
m.anchors /= stride
|
62 |
+
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
63 |
+
else:
|
64 |
+
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
65 |
+
LOGGER.info(emojis(s))
|
66 |
+
|
67 |
+
|
68 |
+
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
69 |
+
""" Creates kmeans-evolved anchors from training dataset
|
70 |
+
|
71 |
+
Arguments:
|
72 |
+
dataset: path to data.yaml, or a loaded dataset
|
73 |
+
n: number of anchors
|
74 |
+
img_size: image size used for training
|
75 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
76 |
+
gen: generations to evolve anchors using genetic algorithm
|
77 |
+
verbose: print all results
|
78 |
+
|
79 |
+
Return:
|
80 |
+
k: kmeans evolved anchors
|
81 |
+
|
82 |
+
Usage:
|
83 |
+
from utils.autoanchor import *; _ = kmean_anchors()
|
84 |
+
"""
|
85 |
+
from scipy.cluster.vq import kmeans
|
86 |
+
|
87 |
+
npr = np.random
|
88 |
+
thr = 1 / thr
|
89 |
+
|
90 |
+
def metric(k, wh): # compute metrics
|
91 |
+
r = wh[:, None] / k[None]
|
92 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
93 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
94 |
+
return x, x.max(1)[0] # x, best_x
|
95 |
+
|
96 |
+
def anchor_fitness(k): # mutation fitness
|
97 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
98 |
+
return (best * (best > thr).float()).mean() # fitness
|
99 |
+
|
100 |
+
def print_results(k, verbose=True):
|
101 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
102 |
+
x, best = metric(k, wh0)
|
103 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
104 |
+
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
105 |
+
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
106 |
+
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
107 |
+
for x in k:
|
108 |
+
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
109 |
+
if verbose:
|
110 |
+
LOGGER.info(s[:-2])
|
111 |
+
return k
|
112 |
+
|
113 |
+
if isinstance(dataset, str): # *.yaml file
|
114 |
+
with open(dataset, errors='ignore') as f:
|
115 |
+
data_dict = yaml.safe_load(f) # model dict
|
116 |
+
from utils.dataloaders import LoadImagesAndLabels
|
117 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
118 |
+
|
119 |
+
# Get label wh
|
120 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
121 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
122 |
+
|
123 |
+
# Filter
|
124 |
+
i = (wh0 < 3.0).any(1).sum()
|
125 |
+
if i:
|
126 |
+
LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size')
|
127 |
+
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
128 |
+
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
129 |
+
|
130 |
+
# Kmeans init
|
131 |
+
try:
|
132 |
+
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
133 |
+
assert n <= len(wh) # apply overdetermined constraint
|
134 |
+
s = wh.std(0) # sigmas for whitening
|
135 |
+
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
136 |
+
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
137 |
+
except Exception:
|
138 |
+
LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init')
|
139 |
+
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
140 |
+
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
141 |
+
k = print_results(k, verbose=False)
|
142 |
+
|
143 |
+
# Plot
|
144 |
+
# k, d = [None] * 20, [None] * 20
|
145 |
+
# for i in tqdm(range(1, 21)):
|
146 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
147 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
148 |
+
# ax = ax.ravel()
|
149 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
150 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
151 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
152 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
153 |
+
# fig.savefig('wh.png', dpi=200)
|
154 |
+
|
155 |
+
# Evolve
|
156 |
+
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
157 |
+
pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
158 |
+
for _ in pbar:
|
159 |
+
v = np.ones(sh)
|
160 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
161 |
+
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
162 |
+
kg = (k.copy() * v).clip(min=2.0)
|
163 |
+
fg = anchor_fitness(kg)
|
164 |
+
if fg > f:
|
165 |
+
f, k = fg, kg.copy()
|
166 |
+
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
167 |
+
if verbose:
|
168 |
+
print_results(k, verbose)
|
169 |
+
|
170 |
+
return print_results(k)
|
utils/autobatch.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Auto-batch utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
from copy import deepcopy
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from utils.general import LOGGER, colorstr, emojis
|
12 |
+
from utils.torch_utils import profile
|
13 |
+
|
14 |
+
|
15 |
+
def check_train_batch_size(model, imgsz=640, amp=True):
|
16 |
+
# Check YOLOv5 training batch size
|
17 |
+
with torch.cuda.amp.autocast(amp):
|
18 |
+
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
19 |
+
|
20 |
+
|
21 |
+
def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
|
22 |
+
# Automatically estimate best batch size to use `fraction` of available CUDA memory
|
23 |
+
# Usage:
|
24 |
+
# import torch
|
25 |
+
# from utils.autobatch import autobatch
|
26 |
+
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
27 |
+
# print(autobatch(model))
|
28 |
+
|
29 |
+
# Check device
|
30 |
+
prefix = colorstr('AutoBatch: ')
|
31 |
+
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
32 |
+
device = next(model.parameters()).device # get model device
|
33 |
+
if device.type == 'cpu':
|
34 |
+
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
35 |
+
return batch_size
|
36 |
+
|
37 |
+
# Inspect CUDA memory
|
38 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
39 |
+
d = str(device).upper() # 'CUDA:0'
|
40 |
+
properties = torch.cuda.get_device_properties(device) # device properties
|
41 |
+
t = properties.total_memory / gb # GiB total
|
42 |
+
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
43 |
+
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
44 |
+
f = t - (r + a) # GiB free
|
45 |
+
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
46 |
+
|
47 |
+
# Profile batch sizes
|
48 |
+
batch_sizes = [1, 2, 4, 8, 16]
|
49 |
+
try:
|
50 |
+
img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
|
51 |
+
results = profile(img, model, n=3, device=device)
|
52 |
+
except Exception as e:
|
53 |
+
LOGGER.warning(f'{prefix}{e}')
|
54 |
+
|
55 |
+
# Fit a solution
|
56 |
+
y = [x[2] for x in results if x] # memory [2]
|
57 |
+
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
58 |
+
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
59 |
+
if None in results: # some sizes failed
|
60 |
+
i = results.index(None) # first fail index
|
61 |
+
if b >= batch_sizes[i]: # y intercept above failure point
|
62 |
+
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
63 |
+
|
64 |
+
fraction = np.polyval(p, b) / t # actual fraction predicted
|
65 |
+
LOGGER.info(emojis(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅'))
|
66 |
+
return b
|
utils/benchmarks.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Run YOLOv5 benchmarks on all supported export formats
|
4 |
+
|
5 |
+
Format | `export.py --include` | Model
|
6 |
+
--- | --- | ---
|
7 |
+
PyTorch | - | yolov5s.pt
|
8 |
+
TorchScript | `torchscript` | yolov5s.torchscript
|
9 |
+
ONNX | `onnx` | yolov5s.onnx
|
10 |
+
OpenVINO | `openvino` | yolov5s_openvino_model/
|
11 |
+
TensorRT | `engine` | yolov5s.engine
|
12 |
+
CoreML | `coreml` | yolov5s.mlmodel
|
13 |
+
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
14 |
+
TensorFlow GraphDef | `pb` | yolov5s.pb
|
15 |
+
TensorFlow Lite | `tflite` | yolov5s.tflite
|
16 |
+
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
17 |
+
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
18 |
+
|
19 |
+
Requirements:
|
20 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
21 |
+
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
22 |
+
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
|
23 |
+
|
24 |
+
Usage:
|
25 |
+
$ python utils/benchmarks.py --weights yolov5s.pt --img 640
|
26 |
+
"""
|
27 |
+
|
28 |
+
import argparse
|
29 |
+
import platform
|
30 |
+
import sys
|
31 |
+
import time
|
32 |
+
from pathlib import Path
|
33 |
+
|
34 |
+
import pandas as pd
|
35 |
+
|
36 |
+
FILE = Path(__file__).resolve()
|
37 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
38 |
+
if str(ROOT) not in sys.path:
|
39 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
40 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
41 |
+
|
42 |
+
import export
|
43 |
+
import val
|
44 |
+
from utils import notebook_init
|
45 |
+
from utils.general import LOGGER, check_yaml, file_size, print_args
|
46 |
+
from utils.torch_utils import select_device
|
47 |
+
|
48 |
+
|
49 |
+
def run(
|
50 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
51 |
+
imgsz=640, # inference size (pixels)
|
52 |
+
batch_size=1, # batch size
|
53 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
54 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
55 |
+
half=False, # use FP16 half-precision inference
|
56 |
+
test=False, # test exports only
|
57 |
+
pt_only=False, # test PyTorch only
|
58 |
+
hard_fail=False, # throw error on benchmark failure
|
59 |
+
):
|
60 |
+
y, t = [], time.time()
|
61 |
+
device = select_device(device)
|
62 |
+
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
63 |
+
try:
|
64 |
+
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
65 |
+
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
66 |
+
if 'cpu' in device.type:
|
67 |
+
assert cpu, 'inference not supported on CPU'
|
68 |
+
if 'cuda' in device.type:
|
69 |
+
assert gpu, 'inference not supported on GPU'
|
70 |
+
|
71 |
+
# Export
|
72 |
+
if f == '-':
|
73 |
+
w = weights # PyTorch format
|
74 |
+
else:
|
75 |
+
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
76 |
+
assert suffix in str(w), 'export failed'
|
77 |
+
|
78 |
+
# Validate
|
79 |
+
result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half)
|
80 |
+
metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls))
|
81 |
+
speeds = result[2] # times (preprocess, inference, postprocess)
|
82 |
+
y.append([name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2)]) # MB, mAP, t_inference
|
83 |
+
except Exception as e:
|
84 |
+
if hard_fail:
|
85 |
+
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
86 |
+
LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
|
87 |
+
y.append([name, None, None, None]) # mAP, t_inference
|
88 |
+
if pt_only and i == 0:
|
89 |
+
break # break after PyTorch
|
90 |
+
|
91 |
+
# Print results
|
92 |
+
LOGGER.info('\n')
|
93 |
+
parse_opt()
|
94 |
+
notebook_init() # print system info
|
95 |
+
c = ['Format', 'Size (MB)', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
96 |
+
py = pd.DataFrame(y, columns=c)
|
97 |
+
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
98 |
+
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
99 |
+
return py
|
100 |
+
|
101 |
+
|
102 |
+
def test(
|
103 |
+
weights=ROOT / 'yolov5s.pt', # weights path
|
104 |
+
imgsz=640, # inference size (pixels)
|
105 |
+
batch_size=1, # batch size
|
106 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
107 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
108 |
+
half=False, # use FP16 half-precision inference
|
109 |
+
test=False, # test exports only
|
110 |
+
pt_only=False, # test PyTorch only
|
111 |
+
hard_fail=False, # throw error on benchmark failure
|
112 |
+
):
|
113 |
+
y, t = [], time.time()
|
114 |
+
device = select_device(device)
|
115 |
+
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
116 |
+
try:
|
117 |
+
w = weights if f == '-' else \
|
118 |
+
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
119 |
+
assert suffix in str(w), 'export failed'
|
120 |
+
y.append([name, True])
|
121 |
+
except Exception:
|
122 |
+
y.append([name, False]) # mAP, t_inference
|
123 |
+
|
124 |
+
# Print results
|
125 |
+
LOGGER.info('\n')
|
126 |
+
parse_opt()
|
127 |
+
notebook_init() # print system info
|
128 |
+
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
129 |
+
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
130 |
+
LOGGER.info(str(py))
|
131 |
+
return py
|
132 |
+
|
133 |
+
|
134 |
+
def parse_opt():
|
135 |
+
parser = argparse.ArgumentParser()
|
136 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
|
137 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
138 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
139 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
140 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
141 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
142 |
+
parser.add_argument('--test', action='store_true', help='test exports only')
|
143 |
+
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
144 |
+
parser.add_argument('--hard-fail', action='store_true', help='throw error on benchmark failure')
|
145 |
+
opt = parser.parse_args()
|
146 |
+
opt.data = check_yaml(opt.data) # check YAML
|
147 |
+
print_args(vars(opt))
|
148 |
+
return opt
|
149 |
+
|
150 |
+
|
151 |
+
def main(opt):
|
152 |
+
test(**vars(opt)) if opt.test else run(**vars(opt))
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
opt = parse_opt()
|
157 |
+
main(opt)
|
utils/callbacks.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Callback utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
class Callbacks:
|
8 |
+
""""
|
9 |
+
Handles all registered callbacks for YOLOv5 Hooks
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
# Define the available callbacks
|
14 |
+
self._callbacks = {
|
15 |
+
'on_pretrain_routine_start': [],
|
16 |
+
'on_pretrain_routine_end': [],
|
17 |
+
'on_train_start': [],
|
18 |
+
'on_train_epoch_start': [],
|
19 |
+
'on_train_batch_start': [],
|
20 |
+
'optimizer_step': [],
|
21 |
+
'on_before_zero_grad': [],
|
22 |
+
'on_train_batch_end': [],
|
23 |
+
'on_train_epoch_end': [],
|
24 |
+
'on_val_start': [],
|
25 |
+
'on_val_batch_start': [],
|
26 |
+
'on_val_image_end': [],
|
27 |
+
'on_val_batch_end': [],
|
28 |
+
'on_val_end': [],
|
29 |
+
'on_fit_epoch_end': [], # fit = train + val
|
30 |
+
'on_model_save': [],
|
31 |
+
'on_train_end': [],
|
32 |
+
'on_params_update': [],
|
33 |
+
'teardown': [],}
|
34 |
+
self.stop_training = False # set True to interrupt training
|
35 |
+
|
36 |
+
def register_action(self, hook, name='', callback=None):
|
37 |
+
"""
|
38 |
+
Register a new action to a callback hook
|
39 |
+
|
40 |
+
Args:
|
41 |
+
hook: The callback hook name to register the action to
|
42 |
+
name: The name of the action for later reference
|
43 |
+
callback: The callback to fire
|
44 |
+
"""
|
45 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
46 |
+
assert callable(callback), f"callback '{callback}' is not callable"
|
47 |
+
self._callbacks[hook].append({'name': name, 'callback': callback})
|
48 |
+
|
49 |
+
def get_registered_actions(self, hook=None):
|
50 |
+
""""
|
51 |
+
Returns all the registered actions by callback hook
|
52 |
+
|
53 |
+
Args:
|
54 |
+
hook: The name of the hook to check, defaults to all
|
55 |
+
"""
|
56 |
+
return self._callbacks[hook] if hook else self._callbacks
|
57 |
+
|
58 |
+
def run(self, hook, *args, **kwargs):
|
59 |
+
"""
|
60 |
+
Loop through the registered actions and fire all callbacks
|
61 |
+
|
62 |
+
Args:
|
63 |
+
hook: The name of the hook to check, defaults to all
|
64 |
+
args: Arguments to receive from YOLOv5
|
65 |
+
kwargs: Keyword Arguments to receive from YOLOv5
|
66 |
+
"""
|
67 |
+
|
68 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
69 |
+
|
70 |
+
for logger in self._callbacks[hook]:
|
71 |
+
logger['callback'](*args, **kwargs)
|
utils/dataloaders.py
ADDED
@@ -0,0 +1,1096 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Dataloaders and dataset utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import glob
|
7 |
+
import hashlib
|
8 |
+
import json
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
import shutil
|
13 |
+
import time
|
14 |
+
from itertools import repeat
|
15 |
+
from multiprocessing.pool import Pool, ThreadPool
|
16 |
+
from pathlib import Path
|
17 |
+
from threading import Thread
|
18 |
+
from urllib.parse import urlparse
|
19 |
+
from zipfile import ZipFile
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
import yaml
|
25 |
+
from PIL import ExifTags, Image, ImageOps
|
26 |
+
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
27 |
+
from tqdm import tqdm
|
28 |
+
|
29 |
+
from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
|
30 |
+
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
|
31 |
+
cv2, is_colab, is_kaggle, segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
|
32 |
+
from utils.torch_utils import torch_distributed_zero_first
|
33 |
+
|
34 |
+
# Parameters
|
35 |
+
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
36 |
+
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp' # include image suffixes
|
37 |
+
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
38 |
+
BAR_FORMAT = '{l_bar}{bar:10}{r_bar}{bar:-10b}' # tqdm bar format
|
39 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
40 |
+
|
41 |
+
# Get orientation exif tag
|
42 |
+
for orientation in ExifTags.TAGS.keys():
|
43 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
44 |
+
break
|
45 |
+
|
46 |
+
|
47 |
+
def get_hash(paths):
|
48 |
+
# Returns a single hash value of a list of paths (files or dirs)
|
49 |
+
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
50 |
+
h = hashlib.md5(str(size).encode()) # hash sizes
|
51 |
+
h.update(''.join(paths).encode()) # hash paths
|
52 |
+
return h.hexdigest() # return hash
|
53 |
+
|
54 |
+
|
55 |
+
def exif_size(img):
|
56 |
+
# Returns exif-corrected PIL size
|
57 |
+
s = img.size # (width, height)
|
58 |
+
try:
|
59 |
+
rotation = dict(img._getexif().items())[orientation]
|
60 |
+
if rotation in [6, 8]: # rotation 270 or 90
|
61 |
+
s = (s[1], s[0])
|
62 |
+
except Exception:
|
63 |
+
pass
|
64 |
+
|
65 |
+
return s
|
66 |
+
|
67 |
+
|
68 |
+
def exif_transpose(image):
|
69 |
+
"""
|
70 |
+
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
71 |
+
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
72 |
+
|
73 |
+
:param image: The image to transpose.
|
74 |
+
:return: An image.
|
75 |
+
"""
|
76 |
+
exif = image.getexif()
|
77 |
+
orientation = exif.get(0x0112, 1) # default 1
|
78 |
+
if orientation > 1:
|
79 |
+
method = {
|
80 |
+
2: Image.FLIP_LEFT_RIGHT,
|
81 |
+
3: Image.ROTATE_180,
|
82 |
+
4: Image.FLIP_TOP_BOTTOM,
|
83 |
+
5: Image.TRANSPOSE,
|
84 |
+
6: Image.ROTATE_270,
|
85 |
+
7: Image.TRANSVERSE,
|
86 |
+
8: Image.ROTATE_90,}.get(orientation)
|
87 |
+
if method is not None:
|
88 |
+
image = image.transpose(method)
|
89 |
+
del exif[0x0112]
|
90 |
+
image.info["exif"] = exif.tobytes()
|
91 |
+
return image
|
92 |
+
|
93 |
+
|
94 |
+
def create_dataloader(path,
|
95 |
+
imgsz,
|
96 |
+
batch_size,
|
97 |
+
stride,
|
98 |
+
single_cls=False,
|
99 |
+
hyp=None,
|
100 |
+
augment=False,
|
101 |
+
cache=False,
|
102 |
+
pad=0.0,
|
103 |
+
rect=False,
|
104 |
+
rank=-1,
|
105 |
+
workers=8,
|
106 |
+
image_weights=False,
|
107 |
+
quad=False,
|
108 |
+
prefix='',
|
109 |
+
shuffle=False):
|
110 |
+
if rect and shuffle:
|
111 |
+
LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
112 |
+
shuffle = False
|
113 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
114 |
+
dataset = LoadImagesAndLabels(
|
115 |
+
path,
|
116 |
+
imgsz,
|
117 |
+
batch_size,
|
118 |
+
augment=augment, # augmentation
|
119 |
+
hyp=hyp, # hyperparameters
|
120 |
+
rect=rect, # rectangular batches
|
121 |
+
cache_images=cache,
|
122 |
+
single_cls=single_cls,
|
123 |
+
stride=int(stride),
|
124 |
+
pad=pad,
|
125 |
+
image_weights=image_weights,
|
126 |
+
prefix=prefix)
|
127 |
+
|
128 |
+
batch_size = min(batch_size, len(dataset))
|
129 |
+
nd = torch.cuda.device_count() # number of CUDA devices
|
130 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
131 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
132 |
+
loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
133 |
+
return loader(dataset,
|
134 |
+
batch_size=batch_size,
|
135 |
+
shuffle=shuffle and sampler is None,
|
136 |
+
num_workers=nw,
|
137 |
+
sampler=sampler,
|
138 |
+
pin_memory=True,
|
139 |
+
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
|
140 |
+
|
141 |
+
|
142 |
+
class InfiniteDataLoader(dataloader.DataLoader):
|
143 |
+
""" Dataloader that reuses workers
|
144 |
+
|
145 |
+
Uses same syntax as vanilla DataLoader
|
146 |
+
"""
|
147 |
+
|
148 |
+
def __init__(self, *args, **kwargs):
|
149 |
+
super().__init__(*args, **kwargs)
|
150 |
+
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
151 |
+
self.iterator = super().__iter__()
|
152 |
+
|
153 |
+
def __len__(self):
|
154 |
+
return len(self.batch_sampler.sampler)
|
155 |
+
|
156 |
+
def __iter__(self):
|
157 |
+
for _ in range(len(self)):
|
158 |
+
yield next(self.iterator)
|
159 |
+
|
160 |
+
|
161 |
+
class _RepeatSampler:
|
162 |
+
""" Sampler that repeats forever
|
163 |
+
|
164 |
+
Args:
|
165 |
+
sampler (Sampler)
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(self, sampler):
|
169 |
+
self.sampler = sampler
|
170 |
+
|
171 |
+
def __iter__(self):
|
172 |
+
while True:
|
173 |
+
yield from iter(self.sampler)
|
174 |
+
|
175 |
+
|
176 |
+
class LoadImages:
|
177 |
+
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
178 |
+
def __init__(self, path, img_size=640, stride=32, auto=True):
|
179 |
+
files = []
|
180 |
+
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
181 |
+
p = str(Path(p).resolve())
|
182 |
+
if '*' in p:
|
183 |
+
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
184 |
+
elif os.path.isdir(p):
|
185 |
+
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
|
186 |
+
elif os.path.isfile(p):
|
187 |
+
files.append(p) # files
|
188 |
+
else:
|
189 |
+
raise FileNotFoundError(f'{p} does not exist')
|
190 |
+
|
191 |
+
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
192 |
+
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
193 |
+
ni, nv = len(images), len(videos)
|
194 |
+
|
195 |
+
self.img_size = img_size
|
196 |
+
self.stride = stride
|
197 |
+
self.files = images + videos
|
198 |
+
self.nf = ni + nv # number of files
|
199 |
+
self.video_flag = [False] * ni + [True] * nv
|
200 |
+
self.mode = 'image'
|
201 |
+
self.auto = auto
|
202 |
+
if any(videos):
|
203 |
+
self.new_video(videos[0]) # new video
|
204 |
+
else:
|
205 |
+
self.cap = None
|
206 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
207 |
+
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
208 |
+
|
209 |
+
def __iter__(self):
|
210 |
+
self.count = 0
|
211 |
+
return self
|
212 |
+
|
213 |
+
def __next__(self):
|
214 |
+
if self.count == self.nf:
|
215 |
+
raise StopIteration
|
216 |
+
path = self.files[self.count]
|
217 |
+
|
218 |
+
if self.video_flag[self.count]:
|
219 |
+
# Read video
|
220 |
+
self.mode = 'video'
|
221 |
+
ret_val, img0 = self.cap.read()
|
222 |
+
while not ret_val:
|
223 |
+
self.count += 1
|
224 |
+
self.cap.release()
|
225 |
+
if self.count == self.nf: # last video
|
226 |
+
raise StopIteration
|
227 |
+
path = self.files[self.count]
|
228 |
+
self.new_video(path)
|
229 |
+
ret_val, img0 = self.cap.read()
|
230 |
+
|
231 |
+
self.frame += 1
|
232 |
+
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
233 |
+
|
234 |
+
else:
|
235 |
+
# Read image
|
236 |
+
self.count += 1
|
237 |
+
img0 = cv2.imread(path) # BGR
|
238 |
+
assert img0 is not None, f'Image Not Found {path}'
|
239 |
+
s = f'image {self.count}/{self.nf} {path}: '
|
240 |
+
|
241 |
+
# Padded resize
|
242 |
+
img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
|
243 |
+
|
244 |
+
# Convert
|
245 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
246 |
+
img = np.ascontiguousarray(img)
|
247 |
+
|
248 |
+
return path, img, img0, self.cap, s
|
249 |
+
|
250 |
+
def new_video(self, path):
|
251 |
+
self.frame = 0
|
252 |
+
self.cap = cv2.VideoCapture(path)
|
253 |
+
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
254 |
+
|
255 |
+
def __len__(self):
|
256 |
+
return self.nf # number of files
|
257 |
+
|
258 |
+
|
259 |
+
class LoadWebcam: # for inference
|
260 |
+
# YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
|
261 |
+
def __init__(self, pipe='0', img_size=640, stride=32):
|
262 |
+
self.img_size = img_size
|
263 |
+
self.stride = stride
|
264 |
+
self.pipe = eval(pipe) if pipe.isnumeric() else pipe
|
265 |
+
self.cap = cv2.VideoCapture(self.pipe) # video capture object
|
266 |
+
self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
|
267 |
+
|
268 |
+
def __iter__(self):
|
269 |
+
self.count = -1
|
270 |
+
return self
|
271 |
+
|
272 |
+
def __next__(self):
|
273 |
+
self.count += 1
|
274 |
+
if cv2.waitKey(1) == ord('q'): # q to quit
|
275 |
+
self.cap.release()
|
276 |
+
cv2.destroyAllWindows()
|
277 |
+
raise StopIteration
|
278 |
+
|
279 |
+
# Read frame
|
280 |
+
ret_val, img0 = self.cap.read()
|
281 |
+
img0 = cv2.flip(img0, 1) # flip left-right
|
282 |
+
|
283 |
+
# Print
|
284 |
+
assert ret_val, f'Camera Error {self.pipe}'
|
285 |
+
img_path = 'webcam.jpg'
|
286 |
+
s = f'webcam {self.count}: '
|
287 |
+
|
288 |
+
# Padded resize
|
289 |
+
img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
290 |
+
|
291 |
+
# Convert
|
292 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
293 |
+
img = np.ascontiguousarray(img)
|
294 |
+
|
295 |
+
return img_path, img, img0, None, s
|
296 |
+
|
297 |
+
def __len__(self):
|
298 |
+
return 0
|
299 |
+
|
300 |
+
|
301 |
+
class LoadStreams:
|
302 |
+
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
303 |
+
def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
|
304 |
+
self.mode = 'stream'
|
305 |
+
self.img_size = img_size
|
306 |
+
self.stride = stride
|
307 |
+
|
308 |
+
if os.path.isfile(sources):
|
309 |
+
with open(sources) as f:
|
310 |
+
sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
|
311 |
+
else:
|
312 |
+
sources = [sources]
|
313 |
+
|
314 |
+
n = len(sources)
|
315 |
+
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
316 |
+
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
317 |
+
self.auto = auto
|
318 |
+
for i, s in enumerate(sources): # index, source
|
319 |
+
# Start thread to read frames from video stream
|
320 |
+
st = f'{i + 1}/{n}: {s}... '
|
321 |
+
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
|
322 |
+
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
|
323 |
+
import pafy
|
324 |
+
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
325 |
+
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
326 |
+
if s == 0:
|
327 |
+
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
|
328 |
+
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
|
329 |
+
cap = cv2.VideoCapture(s)
|
330 |
+
assert cap.isOpened(), f'{st}Failed to open {s}'
|
331 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
332 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
333 |
+
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
|
334 |
+
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
335 |
+
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
|
336 |
+
|
337 |
+
_, self.imgs[i] = cap.read() # guarantee first frame
|
338 |
+
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
|
339 |
+
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
340 |
+
self.threads[i].start()
|
341 |
+
LOGGER.info('') # newline
|
342 |
+
|
343 |
+
# check for common shapes
|
344 |
+
s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
|
345 |
+
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
346 |
+
if not self.rect:
|
347 |
+
LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
|
348 |
+
|
349 |
+
def update(self, i, cap, stream):
|
350 |
+
# Read stream `i` frames in daemon thread
|
351 |
+
n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame
|
352 |
+
while cap.isOpened() and n < f:
|
353 |
+
n += 1
|
354 |
+
# _, self.imgs[index] = cap.read()
|
355 |
+
cap.grab()
|
356 |
+
if n % read == 0:
|
357 |
+
success, im = cap.retrieve()
|
358 |
+
if success:
|
359 |
+
self.imgs[i] = im
|
360 |
+
else:
|
361 |
+
LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
|
362 |
+
self.imgs[i] = np.zeros_like(self.imgs[i])
|
363 |
+
cap.open(stream) # re-open stream if signal was lost
|
364 |
+
time.sleep(0.0) # wait time
|
365 |
+
|
366 |
+
def __iter__(self):
|
367 |
+
self.count = -1
|
368 |
+
return self
|
369 |
+
|
370 |
+
def __next__(self):
|
371 |
+
self.count += 1
|
372 |
+
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
373 |
+
cv2.destroyAllWindows()
|
374 |
+
raise StopIteration
|
375 |
+
|
376 |
+
# Letterbox
|
377 |
+
img0 = self.imgs.copy()
|
378 |
+
img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
|
379 |
+
|
380 |
+
# Stack
|
381 |
+
img = np.stack(img, 0)
|
382 |
+
|
383 |
+
# Convert
|
384 |
+
img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
385 |
+
img = np.ascontiguousarray(img)
|
386 |
+
|
387 |
+
return self.sources, img, img0, None, ''
|
388 |
+
|
389 |
+
def __len__(self):
|
390 |
+
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
391 |
+
|
392 |
+
|
393 |
+
def img2label_paths(img_paths):
|
394 |
+
# Define label paths as a function of image paths
|
395 |
+
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
396 |
+
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
397 |
+
|
398 |
+
|
399 |
+
class LoadImagesAndLabels(Dataset):
|
400 |
+
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
|
401 |
+
cache_version = 0.6 # dataset labels *.cache version
|
402 |
+
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
403 |
+
|
404 |
+
def __init__(self,
|
405 |
+
path,
|
406 |
+
img_size=640,
|
407 |
+
batch_size=16,
|
408 |
+
augment=False,
|
409 |
+
hyp=None,
|
410 |
+
rect=False,
|
411 |
+
image_weights=False,
|
412 |
+
cache_images=False,
|
413 |
+
single_cls=False,
|
414 |
+
stride=32,
|
415 |
+
pad=0.0,
|
416 |
+
prefix=''):
|
417 |
+
self.img_size = img_size
|
418 |
+
self.augment = augment
|
419 |
+
self.hyp = hyp
|
420 |
+
self.image_weights = image_weights
|
421 |
+
self.rect = False if image_weights else rect
|
422 |
+
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
423 |
+
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
424 |
+
self.stride = stride
|
425 |
+
self.path = path
|
426 |
+
self.albumentations = Albumentations() if augment else None
|
427 |
+
|
428 |
+
try:
|
429 |
+
f = [] # image files
|
430 |
+
for p in path if isinstance(path, list) else [path]:
|
431 |
+
p = Path(p) # os-agnostic
|
432 |
+
if p.is_dir(): # dir
|
433 |
+
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
434 |
+
# f = list(p.rglob('*.*')) # pathlib
|
435 |
+
elif p.is_file(): # file
|
436 |
+
with open(p) as t:
|
437 |
+
t = t.read().strip().splitlines()
|
438 |
+
parent = str(p.parent) + os.sep
|
439 |
+
f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
|
440 |
+
# f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
|
441 |
+
else:
|
442 |
+
raise FileNotFoundError(f'{prefix}{p} does not exist')
|
443 |
+
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
444 |
+
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
445 |
+
assert self.im_files, f'{prefix}No images found'
|
446 |
+
except Exception as e:
|
447 |
+
raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
|
448 |
+
|
449 |
+
# Check cache
|
450 |
+
self.label_files = img2label_paths(self.im_files) # labels
|
451 |
+
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
452 |
+
try:
|
453 |
+
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
454 |
+
assert cache['version'] == self.cache_version # matches current version
|
455 |
+
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
|
456 |
+
except Exception:
|
457 |
+
cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops
|
458 |
+
|
459 |
+
# Display cache
|
460 |
+
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
461 |
+
if exists and LOCAL_RANK in {-1, 0}:
|
462 |
+
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
463 |
+
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=BAR_FORMAT) # display cache results
|
464 |
+
if cache['msgs']:
|
465 |
+
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
466 |
+
assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
|
467 |
+
|
468 |
+
# Read cache
|
469 |
+
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
470 |
+
labels, shapes, self.segments = zip(*cache.values())
|
471 |
+
self.labels = list(labels)
|
472 |
+
self.shapes = np.array(shapes, dtype=np.float64)
|
473 |
+
self.im_files = list(cache.keys()) # update
|
474 |
+
self.label_files = img2label_paths(cache.keys()) # update
|
475 |
+
n = len(shapes) # number of images
|
476 |
+
bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
|
477 |
+
nb = bi[-1] + 1 # number of batches
|
478 |
+
self.batch = bi # batch index of image
|
479 |
+
self.n = n
|
480 |
+
self.indices = range(n)
|
481 |
+
|
482 |
+
# Update labels
|
483 |
+
include_class = [] # filter labels to include only these classes (optional)
|
484 |
+
include_class_array = np.array(include_class).reshape(1, -1)
|
485 |
+
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
|
486 |
+
if include_class:
|
487 |
+
j = (label[:, 0:1] == include_class_array).any(1)
|
488 |
+
self.labels[i] = label[j]
|
489 |
+
if segment:
|
490 |
+
self.segments[i] = segment[j]
|
491 |
+
if single_cls: # single-class training, merge all classes into 0
|
492 |
+
self.labels[i][:, 0] = 0
|
493 |
+
if segment:
|
494 |
+
self.segments[i][:, 0] = 0
|
495 |
+
|
496 |
+
# Rectangular Training
|
497 |
+
if self.rect:
|
498 |
+
# Sort by aspect ratio
|
499 |
+
s = self.shapes # wh
|
500 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
501 |
+
irect = ar.argsort()
|
502 |
+
self.im_files = [self.im_files[i] for i in irect]
|
503 |
+
self.label_files = [self.label_files[i] for i in irect]
|
504 |
+
self.labels = [self.labels[i] for i in irect]
|
505 |
+
self.shapes = s[irect] # wh
|
506 |
+
ar = ar[irect]
|
507 |
+
|
508 |
+
# Set training image shapes
|
509 |
+
shapes = [[1, 1]] * nb
|
510 |
+
for i in range(nb):
|
511 |
+
ari = ar[bi == i]
|
512 |
+
mini, maxi = ari.min(), ari.max()
|
513 |
+
if maxi < 1:
|
514 |
+
shapes[i] = [maxi, 1]
|
515 |
+
elif mini > 1:
|
516 |
+
shapes[i] = [1, 1 / mini]
|
517 |
+
|
518 |
+
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
519 |
+
|
520 |
+
# Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
|
521 |
+
self.ims = [None] * n
|
522 |
+
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
523 |
+
if cache_images:
|
524 |
+
gb = 0 # Gigabytes of cached images
|
525 |
+
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
526 |
+
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
527 |
+
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
528 |
+
pbar = tqdm(enumerate(results), total=n, bar_format=BAR_FORMAT, disable=LOCAL_RANK > 0)
|
529 |
+
for i, x in pbar:
|
530 |
+
if cache_images == 'disk':
|
531 |
+
gb += self.npy_files[i].stat().st_size
|
532 |
+
else: # 'ram'
|
533 |
+
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
534 |
+
gb += self.ims[i].nbytes
|
535 |
+
pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
|
536 |
+
pbar.close()
|
537 |
+
|
538 |
+
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
539 |
+
# Cache dataset labels, check images and read shapes
|
540 |
+
x = {} # dict
|
541 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
542 |
+
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
|
543 |
+
with Pool(NUM_THREADS) as pool:
|
544 |
+
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
545 |
+
desc=desc,
|
546 |
+
total=len(self.im_files),
|
547 |
+
bar_format=BAR_FORMAT)
|
548 |
+
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
549 |
+
nm += nm_f
|
550 |
+
nf += nf_f
|
551 |
+
ne += ne_f
|
552 |
+
nc += nc_f
|
553 |
+
if im_file:
|
554 |
+
x[im_file] = [lb, shape, segments]
|
555 |
+
if msg:
|
556 |
+
msgs.append(msg)
|
557 |
+
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
558 |
+
|
559 |
+
pbar.close()
|
560 |
+
if msgs:
|
561 |
+
LOGGER.info('\n'.join(msgs))
|
562 |
+
if nf == 0:
|
563 |
+
LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
|
564 |
+
x['hash'] = get_hash(self.label_files + self.im_files)
|
565 |
+
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
566 |
+
x['msgs'] = msgs # warnings
|
567 |
+
x['version'] = self.cache_version # cache version
|
568 |
+
try:
|
569 |
+
np.save(path, x) # save cache for next time
|
570 |
+
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
571 |
+
LOGGER.info(f'{prefix}New cache created: {path}')
|
572 |
+
except Exception as e:
|
573 |
+
LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
|
574 |
+
return x
|
575 |
+
|
576 |
+
def __len__(self):
|
577 |
+
return len(self.im_files)
|
578 |
+
|
579 |
+
# def __iter__(self):
|
580 |
+
# self.count = -1
|
581 |
+
# print('ran dataset iter')
|
582 |
+
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
583 |
+
# return self
|
584 |
+
|
585 |
+
def __getitem__(self, index):
|
586 |
+
index = self.indices[index] # linear, shuffled, or image_weights
|
587 |
+
|
588 |
+
hyp = self.hyp
|
589 |
+
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
590 |
+
if mosaic:
|
591 |
+
# Load mosaic
|
592 |
+
img, labels = self.load_mosaic(index)
|
593 |
+
shapes = None
|
594 |
+
|
595 |
+
# MixUp augmentation
|
596 |
+
if random.random() < hyp['mixup']:
|
597 |
+
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
|
598 |
+
|
599 |
+
else:
|
600 |
+
# Load image
|
601 |
+
img, (h0, w0), (h, w) = self.load_image(index)
|
602 |
+
|
603 |
+
# Letterbox
|
604 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
605 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
606 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
607 |
+
|
608 |
+
labels = self.labels[index].copy()
|
609 |
+
if labels.size: # normalized xywh to pixel xyxy format
|
610 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
611 |
+
|
612 |
+
if self.augment:
|
613 |
+
img, labels = random_perspective(img,
|
614 |
+
labels,
|
615 |
+
degrees=hyp['degrees'],
|
616 |
+
translate=hyp['translate'],
|
617 |
+
scale=hyp['scale'],
|
618 |
+
shear=hyp['shear'],
|
619 |
+
perspective=hyp['perspective'])
|
620 |
+
|
621 |
+
nl = len(labels) # number of labels
|
622 |
+
if nl:
|
623 |
+
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
624 |
+
|
625 |
+
if self.augment:
|
626 |
+
# Albumentations
|
627 |
+
img, labels = self.albumentations(img, labels)
|
628 |
+
nl = len(labels) # update after albumentations
|
629 |
+
|
630 |
+
# HSV color-space
|
631 |
+
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
632 |
+
|
633 |
+
# Flip up-down
|
634 |
+
if random.random() < hyp['flipud']:
|
635 |
+
img = np.flipud(img)
|
636 |
+
if nl:
|
637 |
+
labels[:, 2] = 1 - labels[:, 2]
|
638 |
+
|
639 |
+
# Flip left-right
|
640 |
+
if random.random() < hyp['fliplr']:
|
641 |
+
img = np.fliplr(img)
|
642 |
+
if nl:
|
643 |
+
labels[:, 1] = 1 - labels[:, 1]
|
644 |
+
|
645 |
+
# Cutouts
|
646 |
+
# labels = cutout(img, labels, p=0.5)
|
647 |
+
# nl = len(labels) # update after cutout
|
648 |
+
|
649 |
+
labels_out = torch.zeros((nl, 6))
|
650 |
+
if nl:
|
651 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
652 |
+
|
653 |
+
# Convert
|
654 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
655 |
+
img = np.ascontiguousarray(img)
|
656 |
+
|
657 |
+
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
|
658 |
+
|
659 |
+
def load_image(self, i):
|
660 |
+
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
|
661 |
+
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
|
662 |
+
if im is None: # not cached in RAM
|
663 |
+
if fn.exists(): # load npy
|
664 |
+
im = np.load(fn)
|
665 |
+
else: # read image
|
666 |
+
im = cv2.imread(f) # BGR
|
667 |
+
assert im is not None, f'Image Not Found {f}'
|
668 |
+
h0, w0 = im.shape[:2] # orig hw
|
669 |
+
r = self.img_size / max(h0, w0) # ratio
|
670 |
+
if r != 1: # if sizes are not equal
|
671 |
+
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
|
672 |
+
im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
673 |
+
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
674 |
+
else:
|
675 |
+
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
676 |
+
|
677 |
+
def cache_images_to_disk(self, i):
|
678 |
+
# Saves an image as an *.npy file for faster loading
|
679 |
+
f = self.npy_files[i]
|
680 |
+
if not f.exists():
|
681 |
+
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
|
682 |
+
|
683 |
+
def load_mosaic(self, index):
|
684 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
685 |
+
labels4, segments4 = [], []
|
686 |
+
s = self.img_size
|
687 |
+
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
688 |
+
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
689 |
+
random.shuffle(indices)
|
690 |
+
for i, index in enumerate(indices):
|
691 |
+
# Load image
|
692 |
+
img, _, (h, w) = self.load_image(index)
|
693 |
+
|
694 |
+
# place img in img4
|
695 |
+
if i == 0: # top left
|
696 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
697 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
698 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
699 |
+
elif i == 1: # top right
|
700 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
701 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
702 |
+
elif i == 2: # bottom left
|
703 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
704 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
705 |
+
elif i == 3: # bottom right
|
706 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
707 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
708 |
+
|
709 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
710 |
+
padw = x1a - x1b
|
711 |
+
padh = y1a - y1b
|
712 |
+
|
713 |
+
# Labels
|
714 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
715 |
+
if labels.size:
|
716 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
717 |
+
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
718 |
+
labels4.append(labels)
|
719 |
+
segments4.extend(segments)
|
720 |
+
|
721 |
+
# Concat/clip labels
|
722 |
+
labels4 = np.concatenate(labels4, 0)
|
723 |
+
for x in (labels4[:, 1:], *segments4):
|
724 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
725 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
726 |
+
|
727 |
+
# Augment
|
728 |
+
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
729 |
+
img4, labels4 = random_perspective(img4,
|
730 |
+
labels4,
|
731 |
+
segments4,
|
732 |
+
degrees=self.hyp['degrees'],
|
733 |
+
translate=self.hyp['translate'],
|
734 |
+
scale=self.hyp['scale'],
|
735 |
+
shear=self.hyp['shear'],
|
736 |
+
perspective=self.hyp['perspective'],
|
737 |
+
border=self.mosaic_border) # border to remove
|
738 |
+
|
739 |
+
return img4, labels4
|
740 |
+
|
741 |
+
def load_mosaic9(self, index):
|
742 |
+
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
|
743 |
+
labels9, segments9 = [], []
|
744 |
+
s = self.img_size
|
745 |
+
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
746 |
+
random.shuffle(indices)
|
747 |
+
hp, wp = -1, -1 # height, width previous
|
748 |
+
for i, index in enumerate(indices):
|
749 |
+
# Load image
|
750 |
+
img, _, (h, w) = self.load_image(index)
|
751 |
+
|
752 |
+
# place img in img9
|
753 |
+
if i == 0: # center
|
754 |
+
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
755 |
+
h0, w0 = h, w
|
756 |
+
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
757 |
+
elif i == 1: # top
|
758 |
+
c = s, s - h, s + w, s
|
759 |
+
elif i == 2: # top right
|
760 |
+
c = s + wp, s - h, s + wp + w, s
|
761 |
+
elif i == 3: # right
|
762 |
+
c = s + w0, s, s + w0 + w, s + h
|
763 |
+
elif i == 4: # bottom right
|
764 |
+
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
765 |
+
elif i == 5: # bottom
|
766 |
+
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
767 |
+
elif i == 6: # bottom left
|
768 |
+
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
769 |
+
elif i == 7: # left
|
770 |
+
c = s - w, s + h0 - h, s, s + h0
|
771 |
+
elif i == 8: # top left
|
772 |
+
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
773 |
+
|
774 |
+
padx, pady = c[:2]
|
775 |
+
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
776 |
+
|
777 |
+
# Labels
|
778 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
779 |
+
if labels.size:
|
780 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
781 |
+
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
782 |
+
labels9.append(labels)
|
783 |
+
segments9.extend(segments)
|
784 |
+
|
785 |
+
# Image
|
786 |
+
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
787 |
+
hp, wp = h, w # height, width previous
|
788 |
+
|
789 |
+
# Offset
|
790 |
+
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
|
791 |
+
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
792 |
+
|
793 |
+
# Concat/clip labels
|
794 |
+
labels9 = np.concatenate(labels9, 0)
|
795 |
+
labels9[:, [1, 3]] -= xc
|
796 |
+
labels9[:, [2, 4]] -= yc
|
797 |
+
c = np.array([xc, yc]) # centers
|
798 |
+
segments9 = [x - c for x in segments9]
|
799 |
+
|
800 |
+
for x in (labels9[:, 1:], *segments9):
|
801 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
802 |
+
# img9, labels9 = replicate(img9, labels9) # replicate
|
803 |
+
|
804 |
+
# Augment
|
805 |
+
img9, labels9 = random_perspective(img9,
|
806 |
+
labels9,
|
807 |
+
segments9,
|
808 |
+
degrees=self.hyp['degrees'],
|
809 |
+
translate=self.hyp['translate'],
|
810 |
+
scale=self.hyp['scale'],
|
811 |
+
shear=self.hyp['shear'],
|
812 |
+
perspective=self.hyp['perspective'],
|
813 |
+
border=self.mosaic_border) # border to remove
|
814 |
+
|
815 |
+
return img9, labels9
|
816 |
+
|
817 |
+
@staticmethod
|
818 |
+
def collate_fn(batch):
|
819 |
+
im, label, path, shapes = zip(*batch) # transposed
|
820 |
+
for i, lb in enumerate(label):
|
821 |
+
lb[:, 0] = i # add target image index for build_targets()
|
822 |
+
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
|
823 |
+
|
824 |
+
@staticmethod
|
825 |
+
def collate_fn4(batch):
|
826 |
+
img, label, path, shapes = zip(*batch) # transposed
|
827 |
+
n = len(shapes) // 4
|
828 |
+
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
829 |
+
|
830 |
+
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
|
831 |
+
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
|
832 |
+
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
|
833 |
+
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
|
834 |
+
i *= 4
|
835 |
+
if random.random() < 0.5:
|
836 |
+
im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
|
837 |
+
align_corners=False)[0].type(img[i].type())
|
838 |
+
lb = label[i]
|
839 |
+
else:
|
840 |
+
im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
|
841 |
+
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
842 |
+
im4.append(im)
|
843 |
+
label4.append(lb)
|
844 |
+
|
845 |
+
for i, lb in enumerate(label4):
|
846 |
+
lb[:, 0] = i # add target image index for build_targets()
|
847 |
+
|
848 |
+
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
|
849 |
+
|
850 |
+
|
851 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
852 |
+
def create_folder(path='./new'):
|
853 |
+
# Create folder
|
854 |
+
if os.path.exists(path):
|
855 |
+
shutil.rmtree(path) # delete output folder
|
856 |
+
os.makedirs(path) # make new output folder
|
857 |
+
|
858 |
+
|
859 |
+
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
860 |
+
# Flatten a recursive directory by bringing all files to top level
|
861 |
+
new_path = Path(str(path) + '_flat')
|
862 |
+
create_folder(new_path)
|
863 |
+
for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
864 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
865 |
+
|
866 |
+
|
867 |
+
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
|
868 |
+
# Convert detection dataset into classification dataset, with one directory per class
|
869 |
+
path = Path(path) # images dir
|
870 |
+
shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
|
871 |
+
files = list(path.rglob('*.*'))
|
872 |
+
n = len(files) # number of files
|
873 |
+
for im_file in tqdm(files, total=n):
|
874 |
+
if im_file.suffix[1:] in IMG_FORMATS:
|
875 |
+
# image
|
876 |
+
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
877 |
+
h, w = im.shape[:2]
|
878 |
+
|
879 |
+
# labels
|
880 |
+
lb_file = Path(img2label_paths([str(im_file)])[0])
|
881 |
+
if Path(lb_file).exists():
|
882 |
+
with open(lb_file) as f:
|
883 |
+
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
884 |
+
|
885 |
+
for j, x in enumerate(lb):
|
886 |
+
c = int(x[0]) # class
|
887 |
+
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
888 |
+
if not f.parent.is_dir():
|
889 |
+
f.parent.mkdir(parents=True)
|
890 |
+
|
891 |
+
b = x[1:] * [w, h, w, h] # box
|
892 |
+
# b[2:] = b[2:].max() # rectangle to square
|
893 |
+
b[2:] = b[2:] * 1.2 + 3 # pad
|
894 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
895 |
+
|
896 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
897 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
898 |
+
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
899 |
+
|
900 |
+
|
901 |
+
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
902 |
+
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
903 |
+
Usage: from utils.dataloaders import *; autosplit()
|
904 |
+
Arguments
|
905 |
+
path: Path to images directory
|
906 |
+
weights: Train, val, test weights (list, tuple)
|
907 |
+
annotated_only: Only use images with an annotated txt file
|
908 |
+
"""
|
909 |
+
path = Path(path) # images dir
|
910 |
+
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
911 |
+
n = len(files) # number of files
|
912 |
+
random.seed(0) # for reproducibility
|
913 |
+
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
914 |
+
|
915 |
+
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
916 |
+
[(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing
|
917 |
+
|
918 |
+
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
919 |
+
for i, img in tqdm(zip(indices, files), total=n):
|
920 |
+
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
921 |
+
with open(path.parent / txt[i], 'a') as f:
|
922 |
+
f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file
|
923 |
+
|
924 |
+
|
925 |
+
def verify_image_label(args):
|
926 |
+
# Verify one image-label pair
|
927 |
+
im_file, lb_file, prefix = args
|
928 |
+
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
929 |
+
try:
|
930 |
+
# verify images
|
931 |
+
im = Image.open(im_file)
|
932 |
+
im.verify() # PIL verify
|
933 |
+
shape = exif_size(im) # image size
|
934 |
+
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
935 |
+
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
936 |
+
if im.format.lower() in ('jpg', 'jpeg'):
|
937 |
+
with open(im_file, 'rb') as f:
|
938 |
+
f.seek(-2, 2)
|
939 |
+
if f.read() != b'\xff\xd9': # corrupt JPEG
|
940 |
+
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
941 |
+
msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
|
942 |
+
|
943 |
+
# verify labels
|
944 |
+
if os.path.isfile(lb_file):
|
945 |
+
nf = 1 # label found
|
946 |
+
with open(lb_file) as f:
|
947 |
+
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
948 |
+
if any(len(x) > 6 for x in lb): # is segment
|
949 |
+
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
950 |
+
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
951 |
+
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
952 |
+
lb = np.array(lb, dtype=np.float32)
|
953 |
+
nl = len(lb)
|
954 |
+
if nl:
|
955 |
+
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
956 |
+
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
957 |
+
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
958 |
+
_, i = np.unique(lb, axis=0, return_index=True)
|
959 |
+
if len(i) < nl: # duplicate row check
|
960 |
+
lb = lb[i] # remove duplicates
|
961 |
+
if segments:
|
962 |
+
segments = segments[i]
|
963 |
+
msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
|
964 |
+
else:
|
965 |
+
ne = 1 # label empty
|
966 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
967 |
+
else:
|
968 |
+
nm = 1 # label missing
|
969 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
970 |
+
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
971 |
+
except Exception as e:
|
972 |
+
nc = 1
|
973 |
+
msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
|
974 |
+
return [None, None, None, None, nm, nf, ne, nc, msg]
|
975 |
+
|
976 |
+
|
977 |
+
def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
|
978 |
+
""" Return dataset statistics dictionary with images and instances counts per split per class
|
979 |
+
To run in parent directory: export PYTHONPATH="$PWD/yolov5"
|
980 |
+
Usage1: from utils.dataloaders import *; dataset_stats('coco128.yaml', autodownload=True)
|
981 |
+
Usage2: from utils.dataloaders import *; dataset_stats('path/to/coco128_with_yaml.zip')
|
982 |
+
Arguments
|
983 |
+
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
984 |
+
autodownload: Attempt to download dataset if not found locally
|
985 |
+
verbose: Print stats dictionary
|
986 |
+
"""
|
987 |
+
|
988 |
+
def _round_labels(labels):
|
989 |
+
# Update labels to integer class and 6 decimal place floats
|
990 |
+
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
991 |
+
|
992 |
+
def _find_yaml(dir):
|
993 |
+
# Return data.yaml file
|
994 |
+
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
|
995 |
+
assert files, f'No *.yaml file found in {dir}'
|
996 |
+
if len(files) > 1:
|
997 |
+
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
|
998 |
+
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
|
999 |
+
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
|
1000 |
+
return files[0]
|
1001 |
+
|
1002 |
+
def _unzip(path):
|
1003 |
+
# Unzip data.zip
|
1004 |
+
if str(path).endswith('.zip'): # path is data.zip
|
1005 |
+
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
1006 |
+
ZipFile(path).extractall(path=path.parent) # unzip
|
1007 |
+
dir = path.with_suffix('') # dataset directory == zip name
|
1008 |
+
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
|
1009 |
+
return True, str(dir), _find_yaml(dir) # zipped, data_dir, yaml_path
|
1010 |
+
else: # path is data.yaml
|
1011 |
+
return False, None, path
|
1012 |
+
|
1013 |
+
def _hub_ops(f, max_dim=1920):
|
1014 |
+
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
|
1015 |
+
f_new = im_dir / Path(f).name # dataset-hub image filename
|
1016 |
+
try: # use PIL
|
1017 |
+
im = Image.open(f)
|
1018 |
+
r = max_dim / max(im.height, im.width) # ratio
|
1019 |
+
if r < 1.0: # image too large
|
1020 |
+
im = im.resize((int(im.width * r), int(im.height * r)))
|
1021 |
+
im.save(f_new, 'JPEG', quality=75, optimize=True) # save
|
1022 |
+
except Exception as e: # use OpenCV
|
1023 |
+
print(f'WARNING: HUB ops PIL failure {f}: {e}')
|
1024 |
+
im = cv2.imread(f)
|
1025 |
+
im_height, im_width = im.shape[:2]
|
1026 |
+
r = max_dim / max(im_height, im_width) # ratio
|
1027 |
+
if r < 1.0: # image too large
|
1028 |
+
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
1029 |
+
cv2.imwrite(str(f_new), im)
|
1030 |
+
|
1031 |
+
zipped, data_dir, yaml_path = _unzip(Path(path))
|
1032 |
+
try:
|
1033 |
+
with open(check_yaml(yaml_path), errors='ignore') as f:
|
1034 |
+
data = yaml.safe_load(f) # data dict
|
1035 |
+
if zipped:
|
1036 |
+
data['path'] = data_dir # TODO: should this be dir.resolve()?`
|
1037 |
+
except Exception:
|
1038 |
+
raise Exception("error/HUB/dataset_stats/yaml_load")
|
1039 |
+
|
1040 |
+
check_dataset(data, autodownload) # download dataset if missing
|
1041 |
+
hub_dir = Path(data['path'] + ('-hub' if hub else ''))
|
1042 |
+
stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary
|
1043 |
+
for split in 'train', 'val', 'test':
|
1044 |
+
if data.get(split) is None:
|
1045 |
+
stats[split] = None # i.e. no test set
|
1046 |
+
continue
|
1047 |
+
x = []
|
1048 |
+
dataset = LoadImagesAndLabels(data[split]) # load dataset
|
1049 |
+
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
|
1050 |
+
x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
|
1051 |
+
x = np.array(x) # shape(128x80)
|
1052 |
+
stats[split] = {
|
1053 |
+
'instance_stats': {
|
1054 |
+
'total': int(x.sum()),
|
1055 |
+
'per_class': x.sum(0).tolist()},
|
1056 |
+
'image_stats': {
|
1057 |
+
'total': dataset.n,
|
1058 |
+
'unlabelled': int(np.all(x == 0, 1).sum()),
|
1059 |
+
'per_class': (x > 0).sum(0).tolist()},
|
1060 |
+
'labels': [{
|
1061 |
+
str(Path(k).name): _round_labels(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
|
1062 |
+
|
1063 |
+
if hub:
|
1064 |
+
im_dir = hub_dir / 'images'
|
1065 |
+
im_dir.mkdir(parents=True, exist_ok=True)
|
1066 |
+
for _ in tqdm(ThreadPool(NUM_THREADS).imap(_hub_ops, dataset.im_files), total=dataset.n, desc='HUB Ops'):
|
1067 |
+
pass
|
1068 |
+
|
1069 |
+
# Profile
|
1070 |
+
stats_path = hub_dir / 'stats.json'
|
1071 |
+
if profile:
|
1072 |
+
for _ in range(1):
|
1073 |
+
file = stats_path.with_suffix('.npy')
|
1074 |
+
t1 = time.time()
|
1075 |
+
np.save(file, stats)
|
1076 |
+
t2 = time.time()
|
1077 |
+
x = np.load(file, allow_pickle=True)
|
1078 |
+
print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
1079 |
+
|
1080 |
+
file = stats_path.with_suffix('.json')
|
1081 |
+
t1 = time.time()
|
1082 |
+
with open(file, 'w') as f:
|
1083 |
+
json.dump(stats, f) # save stats *.json
|
1084 |
+
t2 = time.time()
|
1085 |
+
with open(file) as f:
|
1086 |
+
x = json.load(f) # load hyps dict
|
1087 |
+
print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
|
1088 |
+
|
1089 |
+
# Save, print and return
|
1090 |
+
if hub:
|
1091 |
+
print(f'Saving {stats_path.resolve()}...')
|
1092 |
+
with open(stats_path, 'w') as f:
|
1093 |
+
json.dump(stats, f) # save stats.json
|
1094 |
+
if verbose:
|
1095 |
+
print(json.dumps(stats, indent=2, sort_keys=False))
|
1096 |
+
return stats
|
utils/downloads.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Download utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import platform
|
9 |
+
import subprocess
|
10 |
+
import time
|
11 |
+
import urllib
|
12 |
+
from pathlib import Path
|
13 |
+
from zipfile import ZipFile
|
14 |
+
|
15 |
+
import requests
|
16 |
+
import torch
|
17 |
+
|
18 |
+
|
19 |
+
def is_url(url):
|
20 |
+
# Check if online file exists
|
21 |
+
try:
|
22 |
+
r = urllib.request.urlopen(url) # response
|
23 |
+
return r.getcode() == 200
|
24 |
+
except urllib.request.HTTPError:
|
25 |
+
return False
|
26 |
+
|
27 |
+
|
28 |
+
def gsutil_getsize(url=''):
|
29 |
+
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
30 |
+
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
31 |
+
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
32 |
+
|
33 |
+
|
34 |
+
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
35 |
+
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
36 |
+
from utils.general import LOGGER
|
37 |
+
|
38 |
+
file = Path(file)
|
39 |
+
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
40 |
+
try: # url1
|
41 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
42 |
+
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
43 |
+
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
44 |
+
except Exception as e: # url2
|
45 |
+
file.unlink(missing_ok=True) # remove partial downloads
|
46 |
+
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
47 |
+
os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
48 |
+
finally:
|
49 |
+
if not file.exists() or file.stat().st_size < min_bytes: # check
|
50 |
+
file.unlink(missing_ok=True) # remove partial downloads
|
51 |
+
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
52 |
+
LOGGER.info('')
|
53 |
+
|
54 |
+
|
55 |
+
def attempt_download(file, repo='ultralytics/yolov5', release='v6.1'):
|
56 |
+
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v6.1', etc.
|
57 |
+
from utils.general import LOGGER
|
58 |
+
|
59 |
+
def github_assets(repository, version='latest'):
|
60 |
+
# Return GitHub repo tag (i.e. 'v6.1') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
61 |
+
if version != 'latest':
|
62 |
+
version = f'tags/{version}' # i.e. tags/v6.1
|
63 |
+
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
64 |
+
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
65 |
+
|
66 |
+
file = Path(str(file).strip().replace("'", ''))
|
67 |
+
if not file.exists():
|
68 |
+
# URL specified
|
69 |
+
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
70 |
+
if str(file).startswith(('http:/', 'https:/')): # download
|
71 |
+
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
72 |
+
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
73 |
+
if Path(file).is_file():
|
74 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
75 |
+
else:
|
76 |
+
safe_download(file=file, url=url, min_bytes=1E5)
|
77 |
+
return file
|
78 |
+
|
79 |
+
# GitHub assets
|
80 |
+
assets = [
|
81 |
+
'yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov5n6.pt', 'yolov5s6.pt',
|
82 |
+
'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
|
83 |
+
try:
|
84 |
+
tag, assets = github_assets(repo, release)
|
85 |
+
except Exception:
|
86 |
+
try:
|
87 |
+
tag, assets = github_assets(repo) # latest release
|
88 |
+
except Exception:
|
89 |
+
try:
|
90 |
+
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
91 |
+
except Exception:
|
92 |
+
tag = release
|
93 |
+
|
94 |
+
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
95 |
+
if name in assets:
|
96 |
+
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
97 |
+
safe_download(
|
98 |
+
file,
|
99 |
+
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
100 |
+
url2=f'https://storage.googleapis.com/{repo}/{tag}/{name}', # backup url (optional)
|
101 |
+
min_bytes=1E5,
|
102 |
+
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
103 |
+
|
104 |
+
return str(file)
|
105 |
+
|
106 |
+
|
107 |
+
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
108 |
+
# Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
|
109 |
+
t = time.time()
|
110 |
+
file = Path(file)
|
111 |
+
cookie = Path('cookie') # gdrive cookie
|
112 |
+
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
113 |
+
file.unlink(missing_ok=True) # remove existing file
|
114 |
+
cookie.unlink(missing_ok=True) # remove existing cookie
|
115 |
+
|
116 |
+
# Attempt file download
|
117 |
+
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
118 |
+
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
119 |
+
if os.path.exists('cookie'): # large file
|
120 |
+
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
121 |
+
else: # small file
|
122 |
+
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
123 |
+
r = os.system(s) # execute, capture return
|
124 |
+
cookie.unlink(missing_ok=True) # remove existing cookie
|
125 |
+
|
126 |
+
# Error check
|
127 |
+
if r != 0:
|
128 |
+
file.unlink(missing_ok=True) # remove partial
|
129 |
+
print('Download error ') # raise Exception('Download error')
|
130 |
+
return r
|
131 |
+
|
132 |
+
# Unzip if archive
|
133 |
+
if file.suffix == '.zip':
|
134 |
+
print('unzipping... ', end='')
|
135 |
+
ZipFile(file).extractall(path=file.parent) # unzip
|
136 |
+
file.unlink() # remove zip
|
137 |
+
|
138 |
+
print(f'Done ({time.time() - t:.1f}s)')
|
139 |
+
return r
|
140 |
+
|
141 |
+
|
142 |
+
def get_token(cookie="./cookie"):
|
143 |
+
with open(cookie) as f:
|
144 |
+
for line in f:
|
145 |
+
if "download" in line:
|
146 |
+
return line.split()[-1]
|
147 |
+
return ""
|
148 |
+
|
149 |
+
|
150 |
+
# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
|
151 |
+
#
|
152 |
+
#
|
153 |
+
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
154 |
+
# # Uploads a file to a bucket
|
155 |
+
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
156 |
+
#
|
157 |
+
# storage_client = storage.Client()
|
158 |
+
# bucket = storage_client.get_bucket(bucket_name)
|
159 |
+
# blob = bucket.blob(destination_blob_name)
|
160 |
+
#
|
161 |
+
# blob.upload_from_filename(source_file_name)
|
162 |
+
#
|
163 |
+
# print('File {} uploaded to {}.'.format(
|
164 |
+
# source_file_name,
|
165 |
+
# destination_blob_name))
|
166 |
+
#
|
167 |
+
#
|
168 |
+
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
169 |
+
# # Uploads a blob from a bucket
|
170 |
+
# storage_client = storage.Client()
|
171 |
+
# bucket = storage_client.get_bucket(bucket_name)
|
172 |
+
# blob = bucket.blob(source_blob_name)
|
173 |
+
#
|
174 |
+
# blob.download_to_filename(destination_file_name)
|
175 |
+
#
|
176 |
+
# print('Blob {} downloaded to {}.'.format(
|
177 |
+
# source_blob_name,
|
178 |
+
# destination_file_name))
|
utils/general.py
ADDED
@@ -0,0 +1,1026 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
General utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import contextlib
|
7 |
+
import glob
|
8 |
+
import inspect
|
9 |
+
import logging
|
10 |
+
import math
|
11 |
+
import os
|
12 |
+
import platform
|
13 |
+
import random
|
14 |
+
import re
|
15 |
+
import shutil
|
16 |
+
import signal
|
17 |
+
import threading
|
18 |
+
import time
|
19 |
+
import urllib
|
20 |
+
from datetime import datetime
|
21 |
+
from itertools import repeat
|
22 |
+
from multiprocessing.pool import ThreadPool
|
23 |
+
from pathlib import Path
|
24 |
+
from subprocess import check_output
|
25 |
+
from typing import Optional
|
26 |
+
from zipfile import ZipFile
|
27 |
+
|
28 |
+
import cv2
|
29 |
+
import numpy as np
|
30 |
+
import pandas as pd
|
31 |
+
import pkg_resources as pkg
|
32 |
+
import torch
|
33 |
+
import torchvision
|
34 |
+
import yaml
|
35 |
+
|
36 |
+
from utils.downloads import gsutil_getsize
|
37 |
+
from utils.metrics import box_iou, fitness
|
38 |
+
|
39 |
+
FILE = Path(__file__).resolve()
|
40 |
+
ROOT = FILE.parents[1] # YOLOv5 root directory
|
41 |
+
RANK = int(os.getenv('RANK', -1))
|
42 |
+
|
43 |
+
# Settings
|
44 |
+
DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory
|
45 |
+
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
46 |
+
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
47 |
+
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
48 |
+
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
49 |
+
|
50 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
51 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
52 |
+
pd.options.display.max_columns = 10
|
53 |
+
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
54 |
+
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
55 |
+
os.environ['OMP_NUM_THREADS'] = str(NUM_THREADS) # OpenMP max threads (PyTorch and SciPy)
|
56 |
+
|
57 |
+
|
58 |
+
def is_kaggle():
|
59 |
+
# Is environment a Kaggle Notebook?
|
60 |
+
try:
|
61 |
+
assert os.environ.get('PWD') == '/kaggle/working'
|
62 |
+
assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
|
63 |
+
return True
|
64 |
+
except AssertionError:
|
65 |
+
return False
|
66 |
+
|
67 |
+
|
68 |
+
def is_writeable(dir, test=False):
|
69 |
+
# Return True if directory has write permissions, test opening a file with write permissions if test=True
|
70 |
+
if not test:
|
71 |
+
return os.access(dir, os.R_OK) # possible issues on Windows
|
72 |
+
file = Path(dir) / 'tmp.txt'
|
73 |
+
try:
|
74 |
+
with open(file, 'w'): # open file with write permissions
|
75 |
+
pass
|
76 |
+
file.unlink() # remove file
|
77 |
+
return True
|
78 |
+
except OSError:
|
79 |
+
return False
|
80 |
+
|
81 |
+
|
82 |
+
def set_logging(name=None, verbose=VERBOSE):
|
83 |
+
# Sets level and returns logger
|
84 |
+
if is_kaggle():
|
85 |
+
for h in logging.root.handlers:
|
86 |
+
logging.root.removeHandler(h) # remove all handlers associated with the root logger object
|
87 |
+
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
88 |
+
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
89 |
+
log = logging.getLogger(name)
|
90 |
+
log.setLevel(level)
|
91 |
+
handler = logging.StreamHandler()
|
92 |
+
handler.setFormatter(logging.Formatter("%(message)s"))
|
93 |
+
handler.setLevel(level)
|
94 |
+
log.addHandler(handler)
|
95 |
+
|
96 |
+
|
97 |
+
set_logging() # run before defining LOGGER
|
98 |
+
LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.)
|
99 |
+
|
100 |
+
|
101 |
+
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
|
102 |
+
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
|
103 |
+
env = os.getenv(env_var)
|
104 |
+
if env:
|
105 |
+
path = Path(env) # use environment variable
|
106 |
+
else:
|
107 |
+
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
|
108 |
+
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
|
109 |
+
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
|
110 |
+
path.mkdir(exist_ok=True) # make if required
|
111 |
+
return path
|
112 |
+
|
113 |
+
|
114 |
+
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
|
115 |
+
|
116 |
+
|
117 |
+
class Profile(contextlib.ContextDecorator):
|
118 |
+
# Usage: @Profile() decorator or 'with Profile():' context manager
|
119 |
+
def __enter__(self):
|
120 |
+
self.start = time.time()
|
121 |
+
|
122 |
+
def __exit__(self, type, value, traceback):
|
123 |
+
print(f'Profile results: {time.time() - self.start:.5f}s')
|
124 |
+
|
125 |
+
|
126 |
+
class Timeout(contextlib.ContextDecorator):
|
127 |
+
# Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
|
128 |
+
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
|
129 |
+
self.seconds = int(seconds)
|
130 |
+
self.timeout_message = timeout_msg
|
131 |
+
self.suppress = bool(suppress_timeout_errors)
|
132 |
+
|
133 |
+
def _timeout_handler(self, signum, frame):
|
134 |
+
raise TimeoutError(self.timeout_message)
|
135 |
+
|
136 |
+
def __enter__(self):
|
137 |
+
if platform.system() != 'Windows': # not supported on Windows
|
138 |
+
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
|
139 |
+
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
|
140 |
+
|
141 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
142 |
+
if platform.system() != 'Windows':
|
143 |
+
signal.alarm(0) # Cancel SIGALRM if it's scheduled
|
144 |
+
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
|
145 |
+
return True
|
146 |
+
|
147 |
+
|
148 |
+
class WorkingDirectory(contextlib.ContextDecorator):
|
149 |
+
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
150 |
+
def __init__(self, new_dir):
|
151 |
+
self.dir = new_dir # new dir
|
152 |
+
self.cwd = Path.cwd().resolve() # current dir
|
153 |
+
|
154 |
+
def __enter__(self):
|
155 |
+
os.chdir(self.dir)
|
156 |
+
|
157 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
158 |
+
os.chdir(self.cwd)
|
159 |
+
|
160 |
+
|
161 |
+
def try_except(func):
|
162 |
+
# try-except function. Usage: @try_except decorator
|
163 |
+
def handler(*args, **kwargs):
|
164 |
+
try:
|
165 |
+
func(*args, **kwargs)
|
166 |
+
except Exception as e:
|
167 |
+
print(e)
|
168 |
+
|
169 |
+
return handler
|
170 |
+
|
171 |
+
|
172 |
+
def threaded(func):
|
173 |
+
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
174 |
+
def wrapper(*args, **kwargs):
|
175 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
176 |
+
thread.start()
|
177 |
+
return thread
|
178 |
+
|
179 |
+
return wrapper
|
180 |
+
|
181 |
+
|
182 |
+
def methods(instance):
|
183 |
+
# Get class/instance methods
|
184 |
+
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
185 |
+
|
186 |
+
|
187 |
+
def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False):
|
188 |
+
# Print function arguments (optional args dict)
|
189 |
+
x = inspect.currentframe().f_back # previous frame
|
190 |
+
file, _, fcn, _, _ = inspect.getframeinfo(x)
|
191 |
+
if args is None: # get args automatically
|
192 |
+
args, _, _, frm = inspect.getargvalues(x)
|
193 |
+
args = {k: v for k, v in frm.items() if k in args}
|
194 |
+
s = (f'{Path(file).stem}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '')
|
195 |
+
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
196 |
+
|
197 |
+
|
198 |
+
def init_seeds(seed=0, deterministic=False):
|
199 |
+
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
200 |
+
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
|
201 |
+
import torch.backends.cudnn as cudnn
|
202 |
+
|
203 |
+
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
|
204 |
+
torch.use_deterministic_algorithms(True)
|
205 |
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
206 |
+
# os.environ['PYTHONHASHSEED'] = str(seed)
|
207 |
+
|
208 |
+
random.seed(seed)
|
209 |
+
np.random.seed(seed)
|
210 |
+
torch.manual_seed(seed)
|
211 |
+
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
|
212 |
+
# torch.cuda.manual_seed(seed)
|
213 |
+
# torch.cuda.manual_seed_all(seed) # for multi GPU, exception safe
|
214 |
+
|
215 |
+
|
216 |
+
def intersect_dicts(da, db, exclude=()):
|
217 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
218 |
+
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
219 |
+
|
220 |
+
|
221 |
+
def get_latest_run(search_dir='.'):
|
222 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
223 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
224 |
+
return max(last_list, key=os.path.getctime) if last_list else ''
|
225 |
+
|
226 |
+
|
227 |
+
def is_docker():
|
228 |
+
# Is environment a Docker container?
|
229 |
+
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
|
230 |
+
|
231 |
+
|
232 |
+
def is_colab():
|
233 |
+
# Is environment a Google Colab instance?
|
234 |
+
try:
|
235 |
+
import google.colab
|
236 |
+
return True
|
237 |
+
except ImportError:
|
238 |
+
return False
|
239 |
+
|
240 |
+
|
241 |
+
def is_pip():
|
242 |
+
# Is file in a pip package?
|
243 |
+
return 'site-packages' in Path(__file__).resolve().parts
|
244 |
+
|
245 |
+
|
246 |
+
def is_ascii(s=''):
|
247 |
+
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
|
248 |
+
s = str(s) # convert list, tuple, None, etc. to str
|
249 |
+
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
250 |
+
|
251 |
+
|
252 |
+
def is_chinese(s='人工智能'):
|
253 |
+
# Is string composed of any Chinese characters?
|
254 |
+
return bool(re.search('[\u4e00-\u9fff]', str(s)))
|
255 |
+
|
256 |
+
|
257 |
+
def emojis(str=''):
|
258 |
+
# Return platform-dependent emoji-safe version of string
|
259 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
260 |
+
|
261 |
+
|
262 |
+
def file_age(path=__file__):
|
263 |
+
# Return days since last file update
|
264 |
+
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
|
265 |
+
return dt.days # + dt.seconds / 86400 # fractional days
|
266 |
+
|
267 |
+
|
268 |
+
def file_date(path=__file__):
|
269 |
+
# Return human-readable file modification date, i.e. '2021-3-26'
|
270 |
+
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
|
271 |
+
return f'{t.year}-{t.month}-{t.day}'
|
272 |
+
|
273 |
+
|
274 |
+
def file_size(path):
|
275 |
+
# Return file/dir size (MB)
|
276 |
+
mb = 1 << 20 # bytes to MiB (1024 ** 2)
|
277 |
+
path = Path(path)
|
278 |
+
if path.is_file():
|
279 |
+
return path.stat().st_size / mb
|
280 |
+
elif path.is_dir():
|
281 |
+
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
|
282 |
+
else:
|
283 |
+
return 0.0
|
284 |
+
|
285 |
+
|
286 |
+
def check_online():
|
287 |
+
# Check internet connectivity
|
288 |
+
import socket
|
289 |
+
try:
|
290 |
+
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
291 |
+
return True
|
292 |
+
except OSError:
|
293 |
+
return False
|
294 |
+
|
295 |
+
|
296 |
+
def git_describe(path=ROOT): # path must be a directory
|
297 |
+
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
298 |
+
try:
|
299 |
+
assert (Path(path) / '.git').is_dir()
|
300 |
+
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
301 |
+
except Exception:
|
302 |
+
return ''
|
303 |
+
|
304 |
+
|
305 |
+
@try_except
|
306 |
+
@WorkingDirectory(ROOT)
|
307 |
+
def check_git_status():
|
308 |
+
# Recommend 'git pull' if code is out of date
|
309 |
+
msg = ', for updates see https://github.com/ultralytics/yolov5'
|
310 |
+
s = colorstr('github: ') # string
|
311 |
+
assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
|
312 |
+
assert not is_docker(), s + 'skipping check (Docker image)' + msg
|
313 |
+
assert check_online(), s + 'skipping check (offline)' + msg
|
314 |
+
|
315 |
+
cmd = 'git fetch && git config --get remote.origin.url'
|
316 |
+
url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch
|
317 |
+
branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
318 |
+
n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
|
319 |
+
if n > 0:
|
320 |
+
s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
|
321 |
+
else:
|
322 |
+
s += f'up to date with {url} ✅'
|
323 |
+
LOGGER.info(emojis(s)) # emoji-safe
|
324 |
+
|
325 |
+
|
326 |
+
def check_python(minimum='3.7.0'):
|
327 |
+
# Check current python version vs. required python version
|
328 |
+
check_version(platform.python_version(), minimum, name='Python ', hard=True)
|
329 |
+
|
330 |
+
|
331 |
+
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
|
332 |
+
# Check version vs. required version
|
333 |
+
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
334 |
+
result = (current == minimum) if pinned else (current >= minimum) # bool
|
335 |
+
s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string
|
336 |
+
if hard:
|
337 |
+
assert result, s # assert min requirements met
|
338 |
+
if verbose and not result:
|
339 |
+
LOGGER.warning(s)
|
340 |
+
return result
|
341 |
+
|
342 |
+
|
343 |
+
@try_except
|
344 |
+
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()):
|
345 |
+
# Check installed dependencies meet requirements (pass *.txt file or list of packages)
|
346 |
+
prefix = colorstr('red', 'bold', 'requirements:')
|
347 |
+
check_python() # check python version
|
348 |
+
if isinstance(requirements, (str, Path)): # requirements.txt file
|
349 |
+
file = Path(requirements)
|
350 |
+
assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
|
351 |
+
with file.open() as f:
|
352 |
+
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
353 |
+
else: # list or tuple of packages
|
354 |
+
requirements = [x for x in requirements if x not in exclude]
|
355 |
+
|
356 |
+
n = 0 # number of packages updates
|
357 |
+
for i, r in enumerate(requirements):
|
358 |
+
try:
|
359 |
+
pkg.require(r)
|
360 |
+
except Exception: # DistributionNotFound or VersionConflict if requirements not met
|
361 |
+
s = f"{prefix} {r} not found and is required by YOLOv5"
|
362 |
+
if install and AUTOINSTALL: # check environment variable
|
363 |
+
LOGGER.info(f"{s}, attempting auto-update...")
|
364 |
+
try:
|
365 |
+
assert check_online(), f"'pip install {r}' skipped (offline)"
|
366 |
+
LOGGER.info(check_output(f'pip install "{r}" {cmds[i] if cmds else ""}', shell=True).decode())
|
367 |
+
n += 1
|
368 |
+
except Exception as e:
|
369 |
+
LOGGER.warning(f'{prefix} {e}')
|
370 |
+
else:
|
371 |
+
LOGGER.info(f'{s}. Please install and rerun your command.')
|
372 |
+
|
373 |
+
if n: # if packages updated
|
374 |
+
source = file.resolve() if 'file' in locals() else requirements
|
375 |
+
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
376 |
+
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
377 |
+
LOGGER.info(emojis(s))
|
378 |
+
|
379 |
+
|
380 |
+
def check_img_size(imgsz, s=32, floor=0):
|
381 |
+
# Verify image size is a multiple of stride s in each dimension
|
382 |
+
if isinstance(imgsz, int): # integer i.e. img_size=640
|
383 |
+
new_size = max(make_divisible(imgsz, int(s)), floor)
|
384 |
+
else: # list i.e. img_size=[640, 480]
|
385 |
+
imgsz = list(imgsz) # convert to list if tuple
|
386 |
+
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
387 |
+
if new_size != imgsz:
|
388 |
+
LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
389 |
+
return new_size
|
390 |
+
|
391 |
+
|
392 |
+
def check_imshow():
|
393 |
+
# Check if environment supports image displays
|
394 |
+
try:
|
395 |
+
assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
|
396 |
+
assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
|
397 |
+
cv2.imshow('test', np.zeros((1, 1, 3)))
|
398 |
+
cv2.waitKey(1)
|
399 |
+
cv2.destroyAllWindows()
|
400 |
+
cv2.waitKey(1)
|
401 |
+
return True
|
402 |
+
except Exception as e:
|
403 |
+
LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
404 |
+
return False
|
405 |
+
|
406 |
+
|
407 |
+
def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
|
408 |
+
# Check file(s) for acceptable suffix
|
409 |
+
if file and suffix:
|
410 |
+
if isinstance(suffix, str):
|
411 |
+
suffix = [suffix]
|
412 |
+
for f in file if isinstance(file, (list, tuple)) else [file]:
|
413 |
+
s = Path(f).suffix.lower() # file suffix
|
414 |
+
if len(s):
|
415 |
+
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
416 |
+
|
417 |
+
|
418 |
+
def check_yaml(file, suffix=('.yaml', '.yml')):
|
419 |
+
# Search/download YAML file (if necessary) and return path, checking suffix
|
420 |
+
return check_file(file, suffix)
|
421 |
+
|
422 |
+
|
423 |
+
def check_file(file, suffix=''):
|
424 |
+
# Search/download file (if necessary) and return path
|
425 |
+
check_suffix(file, suffix) # optional
|
426 |
+
file = str(file) # convert to str()
|
427 |
+
if Path(file).is_file() or not file: # exists
|
428 |
+
return file
|
429 |
+
elif file.startswith(('http:/', 'https:/')): # download
|
430 |
+
url = file # warning: Pathlib turns :// -> :/
|
431 |
+
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
|
432 |
+
if Path(file).is_file():
|
433 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
434 |
+
else:
|
435 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
436 |
+
torch.hub.download_url_to_file(url, file)
|
437 |
+
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
438 |
+
return file
|
439 |
+
else: # search
|
440 |
+
files = []
|
441 |
+
for d in 'data', 'models', 'utils': # search directories
|
442 |
+
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
|
443 |
+
assert len(files), f'File not found: {file}' # assert file was found
|
444 |
+
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
445 |
+
return files[0] # return file
|
446 |
+
|
447 |
+
|
448 |
+
def check_font(font=FONT, progress=False):
|
449 |
+
# Download font to CONFIG_DIR if necessary
|
450 |
+
font = Path(font)
|
451 |
+
file = CONFIG_DIR / font.name
|
452 |
+
if not font.exists() and not file.exists():
|
453 |
+
url = "https://ultralytics.com/assets/" + font.name
|
454 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
455 |
+
torch.hub.download_url_to_file(url, str(file), progress=progress)
|
456 |
+
|
457 |
+
|
458 |
+
def check_dataset(data, autodownload=True):
|
459 |
+
# Download, check and/or unzip dataset if not found locally
|
460 |
+
|
461 |
+
# Download (optional)
|
462 |
+
extract_dir = ''
|
463 |
+
if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip
|
464 |
+
download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
|
465 |
+
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
|
466 |
+
extract_dir, autodownload = data.parent, False
|
467 |
+
|
468 |
+
# Read yaml (optional)
|
469 |
+
if isinstance(data, (str, Path)):
|
470 |
+
with open(data, errors='ignore') as f:
|
471 |
+
data = yaml.safe_load(f) # dictionary
|
472 |
+
|
473 |
+
# Checks
|
474 |
+
for k in 'train', 'val', 'nc':
|
475 |
+
assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
|
476 |
+
if 'names' not in data:
|
477 |
+
LOGGER.warning(emojis("data.yaml 'names:' field missing ⚠, assigning default names 'class0', 'class1', etc."))
|
478 |
+
data['names'] = [f'class{i}' for i in range(data['nc'])] # default names
|
479 |
+
|
480 |
+
# Resolve paths
|
481 |
+
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
|
482 |
+
if not path.is_absolute():
|
483 |
+
path = (ROOT / path).resolve()
|
484 |
+
for k in 'train', 'val', 'test':
|
485 |
+
if data.get(k): # prepend path
|
486 |
+
data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
|
487 |
+
|
488 |
+
# Parse yaml
|
489 |
+
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
490 |
+
if val:
|
491 |
+
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
492 |
+
if not all(x.exists() for x in val):
|
493 |
+
LOGGER.info(emojis('\nDataset not found ⚠, missing paths %s' % [str(x) for x in val if not x.exists()]))
|
494 |
+
if not s or not autodownload:
|
495 |
+
raise Exception(emojis('Dataset not found ❌'))
|
496 |
+
t = time.time()
|
497 |
+
root = path.parent if 'path' in data else '..' # unzip directory i.e. '../'
|
498 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
499 |
+
f = Path(s).name # filename
|
500 |
+
LOGGER.info(f'Downloading {s} to {f}...')
|
501 |
+
torch.hub.download_url_to_file(s, f)
|
502 |
+
Path(root).mkdir(parents=True, exist_ok=True) # create root
|
503 |
+
ZipFile(f).extractall(path=root) # unzip
|
504 |
+
Path(f).unlink() # remove zip
|
505 |
+
r = None # success
|
506 |
+
elif s.startswith('bash '): # bash script
|
507 |
+
LOGGER.info(f'Running {s} ...')
|
508 |
+
r = os.system(s)
|
509 |
+
else: # python script
|
510 |
+
r = exec(s, {'yaml': data}) # return None
|
511 |
+
dt = f'({round(time.time() - t, 1)}s)'
|
512 |
+
s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌"
|
513 |
+
LOGGER.info(emojis(f"Dataset download {s}"))
|
514 |
+
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
|
515 |
+
return data # dictionary
|
516 |
+
|
517 |
+
|
518 |
+
def check_amp(model):
|
519 |
+
# Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
|
520 |
+
from models.common import AutoShape, DetectMultiBackend
|
521 |
+
|
522 |
+
def amp_allclose(model, im):
|
523 |
+
# All close FP32 vs AMP results
|
524 |
+
m = AutoShape(model, verbose=False) # model
|
525 |
+
a = m(im).xywhn[0] # FP32 inference
|
526 |
+
m.amp = True
|
527 |
+
b = m(im).xywhn[0] # AMP inference
|
528 |
+
return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
|
529 |
+
|
530 |
+
prefix = colorstr('AMP: ')
|
531 |
+
device = next(model.parameters()).device # get model device
|
532 |
+
if device.type == 'cpu':
|
533 |
+
return False # AMP disabled on CPU
|
534 |
+
f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
|
535 |
+
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
|
536 |
+
try:
|
537 |
+
assert amp_allclose(model, im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
|
538 |
+
LOGGER.info(emojis(f'{prefix}checks passed ✅'))
|
539 |
+
return True
|
540 |
+
except Exception:
|
541 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
|
542 |
+
LOGGER.warning(emojis(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}'))
|
543 |
+
return False
|
544 |
+
|
545 |
+
|
546 |
+
def url2file(url):
|
547 |
+
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
|
548 |
+
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
|
549 |
+
return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
|
550 |
+
|
551 |
+
|
552 |
+
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
|
553 |
+
# Multi-threaded file download and unzip function, used in data.yaml for autodownload
|
554 |
+
def download_one(url, dir):
|
555 |
+
# Download 1 file
|
556 |
+
success = True
|
557 |
+
f = dir / Path(url).name # filename
|
558 |
+
if Path(url).is_file(): # exists in current path
|
559 |
+
Path(url).rename(f) # move to dir
|
560 |
+
elif not f.exists():
|
561 |
+
LOGGER.info(f'Downloading {url} to {f}...')
|
562 |
+
for i in range(retry + 1):
|
563 |
+
if curl:
|
564 |
+
s = 'sS' if threads > 1 else '' # silent
|
565 |
+
r = os.system(f'curl -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
566 |
+
success = r == 0
|
567 |
+
else:
|
568 |
+
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
569 |
+
success = f.is_file()
|
570 |
+
if success:
|
571 |
+
break
|
572 |
+
elif i < retry:
|
573 |
+
LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...')
|
574 |
+
else:
|
575 |
+
LOGGER.warning(f'Failed to download {url}...')
|
576 |
+
|
577 |
+
if unzip and success and f.suffix in ('.zip', '.gz'):
|
578 |
+
LOGGER.info(f'Unzipping {f}...')
|
579 |
+
if f.suffix == '.zip':
|
580 |
+
ZipFile(f).extractall(path=dir) # unzip
|
581 |
+
elif f.suffix == '.gz':
|
582 |
+
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
583 |
+
if delete:
|
584 |
+
f.unlink() # remove zip
|
585 |
+
|
586 |
+
dir = Path(dir)
|
587 |
+
dir.mkdir(parents=True, exist_ok=True) # make directory
|
588 |
+
if threads > 1:
|
589 |
+
pool = ThreadPool(threads)
|
590 |
+
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded
|
591 |
+
pool.close()
|
592 |
+
pool.join()
|
593 |
+
else:
|
594 |
+
for u in [url] if isinstance(url, (str, Path)) else url:
|
595 |
+
download_one(u, dir)
|
596 |
+
|
597 |
+
|
598 |
+
def make_divisible(x, divisor):
|
599 |
+
# Returns nearest x divisible by divisor
|
600 |
+
if isinstance(divisor, torch.Tensor):
|
601 |
+
divisor = int(divisor.max()) # to int
|
602 |
+
return math.ceil(x / divisor) * divisor
|
603 |
+
|
604 |
+
|
605 |
+
def clean_str(s):
|
606 |
+
# Cleans a string by replacing special characters with underscore _
|
607 |
+
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
608 |
+
|
609 |
+
|
610 |
+
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
611 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
612 |
+
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
613 |
+
|
614 |
+
|
615 |
+
def colorstr(*input):
|
616 |
+
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
617 |
+
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
618 |
+
colors = {
|
619 |
+
'black': '\033[30m', # basic colors
|
620 |
+
'red': '\033[31m',
|
621 |
+
'green': '\033[32m',
|
622 |
+
'yellow': '\033[33m',
|
623 |
+
'blue': '\033[34m',
|
624 |
+
'magenta': '\033[35m',
|
625 |
+
'cyan': '\033[36m',
|
626 |
+
'white': '\033[37m',
|
627 |
+
'bright_black': '\033[90m', # bright colors
|
628 |
+
'bright_red': '\033[91m',
|
629 |
+
'bright_green': '\033[92m',
|
630 |
+
'bright_yellow': '\033[93m',
|
631 |
+
'bright_blue': '\033[94m',
|
632 |
+
'bright_magenta': '\033[95m',
|
633 |
+
'bright_cyan': '\033[96m',
|
634 |
+
'bright_white': '\033[97m',
|
635 |
+
'end': '\033[0m', # misc
|
636 |
+
'bold': '\033[1m',
|
637 |
+
'underline': '\033[4m'}
|
638 |
+
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
639 |
+
|
640 |
+
|
641 |
+
def labels_to_class_weights(labels, nc=80):
|
642 |
+
# Get class weights (inverse frequency) from training labels
|
643 |
+
if labels[0] is None: # no labels loaded
|
644 |
+
return torch.Tensor()
|
645 |
+
|
646 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
647 |
+
classes = labels[:, 0].astype(int) # labels = [class xywh]
|
648 |
+
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
649 |
+
|
650 |
+
# Prepend gridpoint count (for uCE training)
|
651 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
652 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
653 |
+
|
654 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
655 |
+
weights = 1 / weights # number of targets per class
|
656 |
+
weights /= weights.sum() # normalize
|
657 |
+
return torch.from_numpy(weights).float()
|
658 |
+
|
659 |
+
|
660 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
661 |
+
# Produces image weights based on class_weights and image contents
|
662 |
+
# Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
|
663 |
+
class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
|
664 |
+
return (class_weights.reshape(1, nc) * class_counts).sum(1)
|
665 |
+
|
666 |
+
|
667 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
668 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
669 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
670 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
671 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
672 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
673 |
+
return [
|
674 |
+
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
675 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
676 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
677 |
+
|
678 |
+
|
679 |
+
def xyxy2xywh(x):
|
680 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
681 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
682 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
683 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
684 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
685 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
686 |
+
return y
|
687 |
+
|
688 |
+
|
689 |
+
def xywh2xyxy(x):
|
690 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
691 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
692 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
693 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
694 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
695 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
696 |
+
return y
|
697 |
+
|
698 |
+
|
699 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
700 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
701 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
702 |
+
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
703 |
+
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
704 |
+
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
705 |
+
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
706 |
+
return y
|
707 |
+
|
708 |
+
|
709 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
710 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
711 |
+
if clip:
|
712 |
+
clip_coords(x, (h - eps, w - eps)) # warning: inplace clip
|
713 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
714 |
+
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
|
715 |
+
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
|
716 |
+
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
|
717 |
+
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
|
718 |
+
return y
|
719 |
+
|
720 |
+
|
721 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
722 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
723 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
724 |
+
y[:, 0] = w * x[:, 0] + padw # top left x
|
725 |
+
y[:, 1] = h * x[:, 1] + padh # top left y
|
726 |
+
return y
|
727 |
+
|
728 |
+
|
729 |
+
def segment2box(segment, width=640, height=640):
|
730 |
+
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
731 |
+
x, y = segment.T # segment xy
|
732 |
+
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
733 |
+
x, y, = x[inside], y[inside]
|
734 |
+
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
735 |
+
|
736 |
+
|
737 |
+
def segments2boxes(segments):
|
738 |
+
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
739 |
+
boxes = []
|
740 |
+
for s in segments:
|
741 |
+
x, y = s.T # segment xy
|
742 |
+
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
743 |
+
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
744 |
+
|
745 |
+
|
746 |
+
def resample_segments(segments, n=1000):
|
747 |
+
# Up-sample an (n,2) segment
|
748 |
+
for i, s in enumerate(segments):
|
749 |
+
s = np.concatenate((s, s[0:1, :]), axis=0)
|
750 |
+
x = np.linspace(0, len(s) - 1, n)
|
751 |
+
xp = np.arange(len(s))
|
752 |
+
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
753 |
+
return segments
|
754 |
+
|
755 |
+
|
756 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
757 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
758 |
+
if ratio_pad is None: # calculate from img0_shape
|
759 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
760 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
761 |
+
else:
|
762 |
+
gain = ratio_pad[0][0]
|
763 |
+
pad = ratio_pad[1]
|
764 |
+
|
765 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
766 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
767 |
+
coords[:, :4] /= gain
|
768 |
+
clip_coords(coords, img0_shape)
|
769 |
+
return coords
|
770 |
+
|
771 |
+
|
772 |
+
def clip_coords(boxes, shape):
|
773 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
774 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
775 |
+
boxes[:, 0].clamp_(0, shape[1]) # x1
|
776 |
+
boxes[:, 1].clamp_(0, shape[0]) # y1
|
777 |
+
boxes[:, 2].clamp_(0, shape[1]) # x2
|
778 |
+
boxes[:, 3].clamp_(0, shape[0]) # y2
|
779 |
+
else: # np.array (faster grouped)
|
780 |
+
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
781 |
+
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
782 |
+
|
783 |
+
|
784 |
+
def non_max_suppression(prediction,
|
785 |
+
conf_thres=0.25,
|
786 |
+
iou_thres=0.45,
|
787 |
+
classes=None,
|
788 |
+
agnostic=False,
|
789 |
+
multi_label=False,
|
790 |
+
labels=(),
|
791 |
+
max_det=300):
|
792 |
+
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes
|
793 |
+
|
794 |
+
Returns:
|
795 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
796 |
+
"""
|
797 |
+
|
798 |
+
bs = prediction.shape[0] # batch size
|
799 |
+
nc = prediction.shape[2] - 5 # number of classes
|
800 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
801 |
+
|
802 |
+
# Checks
|
803 |
+
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
804 |
+
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
805 |
+
|
806 |
+
# Settings
|
807 |
+
# min_wh = 2 # (pixels) minimum box width and height
|
808 |
+
max_wh = 7680 # (pixels) maximum box width and height
|
809 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
810 |
+
time_limit = 0.3 + 0.03 * bs # seconds to quit after
|
811 |
+
redundant = True # require redundant detections
|
812 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
813 |
+
merge = False # use merge-NMS
|
814 |
+
|
815 |
+
t = time.time()
|
816 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * bs
|
817 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
818 |
+
# Apply constraints
|
819 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
820 |
+
x = x[xc[xi]] # confidence
|
821 |
+
|
822 |
+
# Cat apriori labels if autolabelling
|
823 |
+
if labels and len(labels[xi]):
|
824 |
+
lb = labels[xi]
|
825 |
+
v = torch.zeros((len(lb), nc + 5), device=x.device)
|
826 |
+
v[:, :4] = lb[:, 1:5] # box
|
827 |
+
v[:, 4] = 1.0 # conf
|
828 |
+
v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls
|
829 |
+
x = torch.cat((x, v), 0)
|
830 |
+
|
831 |
+
# If none remain process next image
|
832 |
+
if not x.shape[0]:
|
833 |
+
continue
|
834 |
+
|
835 |
+
# Compute conf
|
836 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
837 |
+
|
838 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
839 |
+
box = xywh2xyxy(x[:, :4])
|
840 |
+
|
841 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
842 |
+
if multi_label:
|
843 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
844 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
845 |
+
else: # best class only
|
846 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
847 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
848 |
+
|
849 |
+
# Filter by class
|
850 |
+
if classes is not None:
|
851 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
852 |
+
|
853 |
+
# Apply finite constraint
|
854 |
+
# if not torch.isfinite(x).all():
|
855 |
+
# x = x[torch.isfinite(x).all(1)]
|
856 |
+
|
857 |
+
# Check shape
|
858 |
+
n = x.shape[0] # number of boxes
|
859 |
+
if not n: # no boxes
|
860 |
+
continue
|
861 |
+
elif n > max_nms: # excess boxes
|
862 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
863 |
+
|
864 |
+
# Batched NMS
|
865 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
866 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
867 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
868 |
+
if i.shape[0] > max_det: # limit detections
|
869 |
+
i = i[:max_det]
|
870 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
871 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
872 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
873 |
+
weights = iou * scores[None] # box weights
|
874 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
875 |
+
if redundant:
|
876 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
877 |
+
|
878 |
+
output[xi] = x[i]
|
879 |
+
if (time.time() - t) > time_limit:
|
880 |
+
LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded')
|
881 |
+
break # time limit exceeded
|
882 |
+
|
883 |
+
return output
|
884 |
+
|
885 |
+
|
886 |
+
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
887 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
888 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
889 |
+
if x.get('ema'):
|
890 |
+
x['model'] = x['ema'] # replace model with ema
|
891 |
+
for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys
|
892 |
+
x[k] = None
|
893 |
+
x['epoch'] = -1
|
894 |
+
x['model'].half() # to FP16
|
895 |
+
for p in x['model'].parameters():
|
896 |
+
p.requires_grad = False
|
897 |
+
torch.save(x, s or f)
|
898 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
899 |
+
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
900 |
+
|
901 |
+
|
902 |
+
def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
|
903 |
+
evolve_csv = save_dir / 'evolve.csv'
|
904 |
+
evolve_yaml = save_dir / 'hyp_evolve.yaml'
|
905 |
+
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
|
906 |
+
'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps]
|
907 |
+
keys = tuple(x.strip() for x in keys)
|
908 |
+
vals = results + tuple(hyp.values())
|
909 |
+
n = len(keys)
|
910 |
+
|
911 |
+
# Download (optional)
|
912 |
+
if bucket:
|
913 |
+
url = f'gs://{bucket}/evolve.csv'
|
914 |
+
if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
|
915 |
+
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
916 |
+
|
917 |
+
# Log to evolve.csv
|
918 |
+
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
919 |
+
with open(evolve_csv, 'a') as f:
|
920 |
+
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
921 |
+
|
922 |
+
# Save yaml
|
923 |
+
with open(evolve_yaml, 'w') as f:
|
924 |
+
data = pd.read_csv(evolve_csv)
|
925 |
+
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
926 |
+
i = np.argmax(fitness(data.values[:, :4])) #
|
927 |
+
generations = len(data)
|
928 |
+
f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
|
929 |
+
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
|
930 |
+
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
931 |
+
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
|
932 |
+
|
933 |
+
# Print to screen
|
934 |
+
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
|
935 |
+
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
|
936 |
+
for x in vals) + '\n\n')
|
937 |
+
|
938 |
+
if bucket:
|
939 |
+
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
940 |
+
|
941 |
+
|
942 |
+
def apply_classifier(x, model, img, im0):
|
943 |
+
# Apply a second stage classifier to YOLO outputs
|
944 |
+
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
|
945 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
946 |
+
for i, d in enumerate(x): # per image
|
947 |
+
if d is not None and len(d):
|
948 |
+
d = d.clone()
|
949 |
+
|
950 |
+
# Reshape and pad cutouts
|
951 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
952 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
953 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
954 |
+
d[:, :4] = xywh2xyxy(b).long()
|
955 |
+
|
956 |
+
# Rescale boxes from img_size to im0 size
|
957 |
+
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
958 |
+
|
959 |
+
# Classes
|
960 |
+
pred_cls1 = d[:, 5].long()
|
961 |
+
ims = []
|
962 |
+
for a in d:
|
963 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
964 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
965 |
+
|
966 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
967 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
968 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
969 |
+
ims.append(im)
|
970 |
+
|
971 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
972 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
973 |
+
|
974 |
+
return x
|
975 |
+
|
976 |
+
|
977 |
+
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
978 |
+
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
979 |
+
path = Path(path) # os-agnostic
|
980 |
+
if path.exists() and not exist_ok:
|
981 |
+
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
982 |
+
|
983 |
+
# Method 1
|
984 |
+
for n in range(2, 9999):
|
985 |
+
p = f'{path}{sep}{n}{suffix}' # increment path
|
986 |
+
if not os.path.exists(p): #
|
987 |
+
break
|
988 |
+
path = Path(p)
|
989 |
+
|
990 |
+
# Method 2 (deprecated)
|
991 |
+
# dirs = glob.glob(f"{path}{sep}*") # similar paths
|
992 |
+
# matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
|
993 |
+
# i = [int(m.groups()[0]) for m in matches if m] # indices
|
994 |
+
# n = max(i) + 1 if i else 2 # increment number
|
995 |
+
# path = Path(f"{path}{sep}{n}{suffix}") # increment path
|
996 |
+
|
997 |
+
if mkdir:
|
998 |
+
path.mkdir(parents=True, exist_ok=True) # make directory
|
999 |
+
|
1000 |
+
return path
|
1001 |
+
|
1002 |
+
|
1003 |
+
# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
|
1004 |
+
imshow_ = cv2.imshow # copy to avoid recursion errors
|
1005 |
+
|
1006 |
+
|
1007 |
+
def imread(path, flags=cv2.IMREAD_COLOR):
|
1008 |
+
return cv2.imdecode(np.fromfile(path, np.uint8), flags)
|
1009 |
+
|
1010 |
+
|
1011 |
+
def imwrite(path, im):
|
1012 |
+
try:
|
1013 |
+
cv2.imencode(Path(path).suffix, im)[1].tofile(path)
|
1014 |
+
return True
|
1015 |
+
except Exception:
|
1016 |
+
return False
|
1017 |
+
|
1018 |
+
|
1019 |
+
def imshow(path, im):
|
1020 |
+
imshow_(path.encode('unicode_escape').decode(), im)
|
1021 |
+
|
1022 |
+
|
1023 |
+
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
|
1024 |
+
|
1025 |
+
# Variables ------------------------------------------------------------------------------------------------------------
|
1026 |
+
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm
|
utils/loss.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Loss functions
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from utils.metrics import bbox_iou
|
10 |
+
from utils.torch_utils import de_parallel
|
11 |
+
|
12 |
+
|
13 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
14 |
+
# return positive, negative label smoothing BCE targets
|
15 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
16 |
+
|
17 |
+
|
18 |
+
class BCEBlurWithLogitsLoss(nn.Module):
|
19 |
+
# BCEwithLogitLoss() with reduced missing label effects.
|
20 |
+
def __init__(self, alpha=0.05):
|
21 |
+
super().__init__()
|
22 |
+
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
23 |
+
self.alpha = alpha
|
24 |
+
|
25 |
+
def forward(self, pred, true):
|
26 |
+
loss = self.loss_fcn(pred, true)
|
27 |
+
pred = torch.sigmoid(pred) # prob from logits
|
28 |
+
dx = pred - true # reduce only missing label effects
|
29 |
+
# dx = (pred - true).abs() # reduce missing label and false label effects
|
30 |
+
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
31 |
+
loss *= alpha_factor
|
32 |
+
return loss.mean()
|
33 |
+
|
34 |
+
|
35 |
+
class FocalLoss(nn.Module):
|
36 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
37 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
38 |
+
super().__init__()
|
39 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
40 |
+
self.gamma = gamma
|
41 |
+
self.alpha = alpha
|
42 |
+
self.reduction = loss_fcn.reduction
|
43 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
44 |
+
|
45 |
+
def forward(self, pred, true):
|
46 |
+
loss = self.loss_fcn(pred, true)
|
47 |
+
# p_t = torch.exp(-loss)
|
48 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
49 |
+
|
50 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
51 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
52 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
53 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
54 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
55 |
+
loss *= alpha_factor * modulating_factor
|
56 |
+
|
57 |
+
if self.reduction == 'mean':
|
58 |
+
return loss.mean()
|
59 |
+
elif self.reduction == 'sum':
|
60 |
+
return loss.sum()
|
61 |
+
else: # 'none'
|
62 |
+
return loss
|
63 |
+
|
64 |
+
|
65 |
+
class QFocalLoss(nn.Module):
|
66 |
+
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
67 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
68 |
+
super().__init__()
|
69 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
70 |
+
self.gamma = gamma
|
71 |
+
self.alpha = alpha
|
72 |
+
self.reduction = loss_fcn.reduction
|
73 |
+
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
74 |
+
|
75 |
+
def forward(self, pred, true):
|
76 |
+
loss = self.loss_fcn(pred, true)
|
77 |
+
|
78 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
79 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
80 |
+
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
81 |
+
loss *= alpha_factor * modulating_factor
|
82 |
+
|
83 |
+
if self.reduction == 'mean':
|
84 |
+
return loss.mean()
|
85 |
+
elif self.reduction == 'sum':
|
86 |
+
return loss.sum()
|
87 |
+
else: # 'none'
|
88 |
+
return loss
|
89 |
+
|
90 |
+
|
91 |
+
class ComputeLoss:
|
92 |
+
sort_obj_iou = False
|
93 |
+
|
94 |
+
# Compute losses
|
95 |
+
def __init__(self, model, autobalance=False):
|
96 |
+
device = next(model.parameters()).device # get model device
|
97 |
+
h = model.hyp # hyperparameters
|
98 |
+
|
99 |
+
# Define criteria
|
100 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
101 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
102 |
+
|
103 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
104 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
105 |
+
|
106 |
+
# Focal loss
|
107 |
+
g = h['fl_gamma'] # focal loss gamma
|
108 |
+
if g > 0:
|
109 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
110 |
+
|
111 |
+
m = de_parallel(model).model[-1] # Detect() module
|
112 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
113 |
+
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
114 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
115 |
+
self.na = m.na # number of anchors
|
116 |
+
self.nc = m.nc # number of classes
|
117 |
+
self.nl = m.nl # number of layers
|
118 |
+
self.anchors = m.anchors
|
119 |
+
self.device = device
|
120 |
+
|
121 |
+
def __call__(self, p, targets): # predictions, targets
|
122 |
+
lcls = torch.zeros(1, device=self.device) # class loss
|
123 |
+
lbox = torch.zeros(1, device=self.device) # box loss
|
124 |
+
lobj = torch.zeros(1, device=self.device) # object loss
|
125 |
+
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
126 |
+
|
127 |
+
# Losses
|
128 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
129 |
+
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
130 |
+
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
131 |
+
|
132 |
+
n = b.shape[0] # number of targets
|
133 |
+
if n:
|
134 |
+
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
|
135 |
+
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
|
136 |
+
|
137 |
+
# Regression
|
138 |
+
pxy = pxy.sigmoid() * 2 - 0.5
|
139 |
+
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
140 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
141 |
+
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
142 |
+
lbox += (1.0 - iou).mean() # iou loss
|
143 |
+
|
144 |
+
# Objectness
|
145 |
+
iou = iou.detach().clamp(0).type(tobj.dtype)
|
146 |
+
if self.sort_obj_iou:
|
147 |
+
j = iou.argsort()
|
148 |
+
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
149 |
+
if self.gr < 1:
|
150 |
+
iou = (1.0 - self.gr) + self.gr * iou
|
151 |
+
tobj[b, a, gj, gi] = iou # iou ratio
|
152 |
+
|
153 |
+
# Classification
|
154 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
155 |
+
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
156 |
+
t[range(n), tcls[i]] = self.cp
|
157 |
+
lcls += self.BCEcls(pcls, t) # BCE
|
158 |
+
|
159 |
+
# Append targets to text file
|
160 |
+
# with open('targets.txt', 'a') as file:
|
161 |
+
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
162 |
+
|
163 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
164 |
+
lobj += obji * self.balance[i] # obj loss
|
165 |
+
if self.autobalance:
|
166 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
167 |
+
|
168 |
+
if self.autobalance:
|
169 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
170 |
+
lbox *= self.hyp['box']
|
171 |
+
lobj *= self.hyp['obj']
|
172 |
+
lcls *= self.hyp['cls']
|
173 |
+
bs = tobj.shape[0] # batch size
|
174 |
+
|
175 |
+
return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
|
176 |
+
|
177 |
+
def build_targets(self, p, targets):
|
178 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
179 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
180 |
+
tcls, tbox, indices, anch = [], [], [], []
|
181 |
+
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
|
182 |
+
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
183 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
|
184 |
+
|
185 |
+
g = 0.5 # bias
|
186 |
+
off = torch.tensor(
|
187 |
+
[
|
188 |
+
[0, 0],
|
189 |
+
[1, 0],
|
190 |
+
[0, 1],
|
191 |
+
[-1, 0],
|
192 |
+
[0, -1], # j,k,l,m
|
193 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
194 |
+
],
|
195 |
+
device=self.device).float() * g # offsets
|
196 |
+
|
197 |
+
for i in range(self.nl):
|
198 |
+
anchors, shape = self.anchors[i], p[i].shape
|
199 |
+
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
200 |
+
|
201 |
+
# Match targets to anchors
|
202 |
+
t = targets * gain # shape(3,n,7)
|
203 |
+
if nt:
|
204 |
+
# Matches
|
205 |
+
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
206 |
+
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
207 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
208 |
+
t = t[j] # filter
|
209 |
+
|
210 |
+
# Offsets
|
211 |
+
gxy = t[:, 2:4] # grid xy
|
212 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
213 |
+
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
214 |
+
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
215 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
216 |
+
t = t.repeat((5, 1, 1))[j]
|
217 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
218 |
+
else:
|
219 |
+
t = targets[0]
|
220 |
+
offsets = 0
|
221 |
+
|
222 |
+
# Define
|
223 |
+
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
224 |
+
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
|
225 |
+
gij = (gxy - offsets).long()
|
226 |
+
gi, gj = gij.T # grid indices
|
227 |
+
|
228 |
+
# Append
|
229 |
+
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
230 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
231 |
+
anch.append(anchors[a]) # anchors
|
232 |
+
tcls.append(c) # class
|
233 |
+
|
234 |
+
return tcls, tbox, indices, anch
|
utils/metrics.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Model validation metrics
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import warnings
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
|
14 |
+
|
15 |
+
def fitness(x):
|
16 |
+
# Model fitness as a weighted combination of metrics
|
17 |
+
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
18 |
+
return (x[:, :4] * w).sum(1)
|
19 |
+
|
20 |
+
|
21 |
+
def smooth(y, f=0.05):
|
22 |
+
# Box filter of fraction f
|
23 |
+
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
24 |
+
p = np.ones(nf // 2) # ones padding
|
25 |
+
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
26 |
+
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
27 |
+
|
28 |
+
|
29 |
+
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
|
30 |
+
""" Compute the average precision, given the recall and precision curves.
|
31 |
+
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
32 |
+
# Arguments
|
33 |
+
tp: True positives (nparray, nx1 or nx10).
|
34 |
+
conf: Objectness value from 0-1 (nparray).
|
35 |
+
pred_cls: Predicted object classes (nparray).
|
36 |
+
target_cls: True object classes (nparray).
|
37 |
+
plot: Plot precision-recall curve at mAP@0.5
|
38 |
+
save_dir: Plot save directory
|
39 |
+
# Returns
|
40 |
+
The average precision as computed in py-faster-rcnn.
|
41 |
+
"""
|
42 |
+
|
43 |
+
# Sort by objectness
|
44 |
+
i = np.argsort(-conf)
|
45 |
+
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
46 |
+
|
47 |
+
# Find unique classes
|
48 |
+
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
49 |
+
nc = unique_classes.shape[0] # number of classes, number of detections
|
50 |
+
|
51 |
+
# Create Precision-Recall curve and compute AP for each class
|
52 |
+
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
53 |
+
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
54 |
+
for ci, c in enumerate(unique_classes):
|
55 |
+
i = pred_cls == c
|
56 |
+
n_l = nt[ci] # number of labels
|
57 |
+
n_p = i.sum() # number of predictions
|
58 |
+
if n_p == 0 or n_l == 0:
|
59 |
+
continue
|
60 |
+
|
61 |
+
# Accumulate FPs and TPs
|
62 |
+
fpc = (1 - tp[i]).cumsum(0)
|
63 |
+
tpc = tp[i].cumsum(0)
|
64 |
+
|
65 |
+
# Recall
|
66 |
+
recall = tpc / (n_l + eps) # recall curve
|
67 |
+
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
68 |
+
|
69 |
+
# Precision
|
70 |
+
precision = tpc / (tpc + fpc) # precision curve
|
71 |
+
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
72 |
+
|
73 |
+
# AP from recall-precision curve
|
74 |
+
for j in range(tp.shape[1]):
|
75 |
+
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
76 |
+
if plot and j == 0:
|
77 |
+
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
78 |
+
|
79 |
+
# Compute F1 (harmonic mean of precision and recall)
|
80 |
+
f1 = 2 * p * r / (p + r + eps)
|
81 |
+
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
82 |
+
names = dict(enumerate(names)) # to dict
|
83 |
+
if plot:
|
84 |
+
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
|
85 |
+
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
|
86 |
+
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
|
87 |
+
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
88 |
+
|
89 |
+
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
90 |
+
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
91 |
+
tp = (r * nt).round() # true positives
|
92 |
+
fp = (tp / (p + eps) - tp).round() # false positives
|
93 |
+
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
94 |
+
|
95 |
+
|
96 |
+
def compute_ap(recall, precision):
|
97 |
+
""" Compute the average precision, given the recall and precision curves
|
98 |
+
# Arguments
|
99 |
+
recall: The recall curve (list)
|
100 |
+
precision: The precision curve (list)
|
101 |
+
# Returns
|
102 |
+
Average precision, precision curve, recall curve
|
103 |
+
"""
|
104 |
+
|
105 |
+
# Append sentinel values to beginning and end
|
106 |
+
mrec = np.concatenate(([0.0], recall, [1.0]))
|
107 |
+
mpre = np.concatenate(([1.0], precision, [0.0]))
|
108 |
+
|
109 |
+
# Compute the precision envelope
|
110 |
+
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
111 |
+
|
112 |
+
# Integrate area under curve
|
113 |
+
method = 'interp' # methods: 'continuous', 'interp'
|
114 |
+
if method == 'interp':
|
115 |
+
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
116 |
+
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
117 |
+
else: # 'continuous'
|
118 |
+
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
119 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
120 |
+
|
121 |
+
return ap, mpre, mrec
|
122 |
+
|
123 |
+
|
124 |
+
class ConfusionMatrix:
|
125 |
+
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
126 |
+
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
127 |
+
self.matrix = np.zeros((nc + 1, nc + 1))
|
128 |
+
self.nc = nc # number of classes
|
129 |
+
self.conf = conf
|
130 |
+
self.iou_thres = iou_thres
|
131 |
+
|
132 |
+
def process_batch(self, detections, labels):
|
133 |
+
"""
|
134 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
135 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
136 |
+
Arguments:
|
137 |
+
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
138 |
+
labels (Array[M, 5]), class, x1, y1, x2, y2
|
139 |
+
Returns:
|
140 |
+
None, updates confusion matrix accordingly
|
141 |
+
"""
|
142 |
+
detections = detections[detections[:, 4] > self.conf]
|
143 |
+
gt_classes = labels[:, 0].int()
|
144 |
+
detection_classes = detections[:, 5].int()
|
145 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
146 |
+
|
147 |
+
x = torch.where(iou > self.iou_thres)
|
148 |
+
if x[0].shape[0]:
|
149 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
150 |
+
if x[0].shape[0] > 1:
|
151 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
152 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
153 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
154 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
155 |
+
else:
|
156 |
+
matches = np.zeros((0, 3))
|
157 |
+
|
158 |
+
n = matches.shape[0] > 0
|
159 |
+
m0, m1, _ = matches.transpose().astype(int)
|
160 |
+
for i, gc in enumerate(gt_classes):
|
161 |
+
j = m0 == i
|
162 |
+
if n and sum(j) == 1:
|
163 |
+
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
164 |
+
else:
|
165 |
+
self.matrix[self.nc, gc] += 1 # background FP
|
166 |
+
|
167 |
+
if n:
|
168 |
+
for i, dc in enumerate(detection_classes):
|
169 |
+
if not any(m1 == i):
|
170 |
+
self.matrix[dc, self.nc] += 1 # background FN
|
171 |
+
|
172 |
+
def matrix(self):
|
173 |
+
return self.matrix
|
174 |
+
|
175 |
+
def tp_fp(self):
|
176 |
+
tp = self.matrix.diagonal() # true positives
|
177 |
+
fp = self.matrix.sum(1) - tp # false positives
|
178 |
+
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
179 |
+
return tp[:-1], fp[:-1] # remove background class
|
180 |
+
|
181 |
+
def plot(self, normalize=True, save_dir='', names=()):
|
182 |
+
try:
|
183 |
+
import seaborn as sn
|
184 |
+
|
185 |
+
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
186 |
+
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
187 |
+
|
188 |
+
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
189 |
+
nc, nn = self.nc, len(names) # number of classes, names
|
190 |
+
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
191 |
+
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
192 |
+
with warnings.catch_warnings():
|
193 |
+
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
194 |
+
sn.heatmap(array,
|
195 |
+
annot=nc < 30,
|
196 |
+
annot_kws={
|
197 |
+
"size": 8},
|
198 |
+
cmap='Blues',
|
199 |
+
fmt='.2f',
|
200 |
+
square=True,
|
201 |
+
vmin=0.0,
|
202 |
+
xticklabels=names + ['background FP'] if labels else "auto",
|
203 |
+
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
|
204 |
+
fig.axes[0].set_xlabel('True')
|
205 |
+
fig.axes[0].set_ylabel('Predicted')
|
206 |
+
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
207 |
+
plt.close()
|
208 |
+
except Exception as e:
|
209 |
+
print(f'WARNING: ConfusionMatrix plot failure: {e}')
|
210 |
+
|
211 |
+
def print(self):
|
212 |
+
for i in range(self.nc + 1):
|
213 |
+
print(' '.join(map(str, self.matrix[i])))
|
214 |
+
|
215 |
+
|
216 |
+
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
217 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
218 |
+
|
219 |
+
# Get the coordinates of bounding boxes
|
220 |
+
if xywh: # transform from xywh to xyxy
|
221 |
+
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)
|
222 |
+
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
223 |
+
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
224 |
+
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
225 |
+
else: # x1, y1, x2, y2 = box1
|
226 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)
|
227 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)
|
228 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
|
229 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
|
230 |
+
|
231 |
+
# Intersection area
|
232 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
233 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
234 |
+
|
235 |
+
# Union Area
|
236 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
237 |
+
|
238 |
+
# IoU
|
239 |
+
iou = inter / union
|
240 |
+
if CIoU or DIoU or GIoU:
|
241 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
242 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
243 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
244 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
245 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
246 |
+
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
247 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
|
248 |
+
with torch.no_grad():
|
249 |
+
alpha = v / (v - iou + (1 + eps))
|
250 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
251 |
+
return iou - rho2 / c2 # DIoU
|
252 |
+
c_area = cw * ch + eps # convex area
|
253 |
+
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
254 |
+
return iou # IoU
|
255 |
+
|
256 |
+
|
257 |
+
def box_area(box):
|
258 |
+
# box = xyxy(4,n)
|
259 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
260 |
+
|
261 |
+
|
262 |
+
def box_iou(box1, box2, eps=1e-7):
|
263 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
264 |
+
"""
|
265 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
266 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
267 |
+
Arguments:
|
268 |
+
box1 (Tensor[N, 4])
|
269 |
+
box2 (Tensor[M, 4])
|
270 |
+
Returns:
|
271 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
272 |
+
IoU values for every element in boxes1 and boxes2
|
273 |
+
"""
|
274 |
+
|
275 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
276 |
+
(a1, a2), (b1, b2) = box1[:, None].chunk(2, 2), box2.chunk(2, 1)
|
277 |
+
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
278 |
+
|
279 |
+
# IoU = inter / (area1 + area2 - inter)
|
280 |
+
return inter / (box_area(box1.T)[:, None] + box_area(box2.T) - inter + eps)
|
281 |
+
|
282 |
+
|
283 |
+
def bbox_ioa(box1, box2, eps=1e-7):
|
284 |
+
""" Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
285 |
+
box1: np.array of shape(4)
|
286 |
+
box2: np.array of shape(nx4)
|
287 |
+
returns: np.array of shape(n)
|
288 |
+
"""
|
289 |
+
|
290 |
+
# Get the coordinates of bounding boxes
|
291 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1
|
292 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
293 |
+
|
294 |
+
# Intersection area
|
295 |
+
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
296 |
+
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
297 |
+
|
298 |
+
# box2 area
|
299 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
300 |
+
|
301 |
+
# Intersection over box2 area
|
302 |
+
return inter_area / box2_area
|
303 |
+
|
304 |
+
|
305 |
+
def wh_iou(wh1, wh2, eps=1e-7):
|
306 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
307 |
+
wh1 = wh1[:, None] # [N,1,2]
|
308 |
+
wh2 = wh2[None] # [1,M,2]
|
309 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
310 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
311 |
+
|
312 |
+
|
313 |
+
# Plots ----------------------------------------------------------------------------------------------------------------
|
314 |
+
|
315 |
+
|
316 |
+
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
317 |
+
# Precision-recall curve
|
318 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
319 |
+
py = np.stack(py, axis=1)
|
320 |
+
|
321 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
322 |
+
for i, y in enumerate(py.T):
|
323 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
324 |
+
else:
|
325 |
+
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
326 |
+
|
327 |
+
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
328 |
+
ax.set_xlabel('Recall')
|
329 |
+
ax.set_ylabel('Precision')
|
330 |
+
ax.set_xlim(0, 1)
|
331 |
+
ax.set_ylim(0, 1)
|
332 |
+
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
333 |
+
fig.savefig(save_dir, dpi=250)
|
334 |
+
plt.close()
|
335 |
+
|
336 |
+
|
337 |
+
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
338 |
+
# Metric-confidence curve
|
339 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
340 |
+
|
341 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
342 |
+
for i, y in enumerate(py):
|
343 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
344 |
+
else:
|
345 |
+
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
346 |
+
|
347 |
+
y = smooth(py.mean(0), 0.05)
|
348 |
+
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
349 |
+
ax.set_xlabel(xlabel)
|
350 |
+
ax.set_ylabel(ylabel)
|
351 |
+
ax.set_xlim(0, 1)
|
352 |
+
ax.set_ylim(0, 1)
|
353 |
+
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
354 |
+
fig.savefig(save_dir, dpi=250)
|
355 |
+
plt.close()
|
utils/plots.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Plotting utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
from copy import copy
|
9 |
+
from pathlib import Path
|
10 |
+
from urllib.error import URLError
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import matplotlib
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import numpy as np
|
16 |
+
import pandas as pd
|
17 |
+
import seaborn as sn
|
18 |
+
import torch
|
19 |
+
from PIL import Image, ImageDraw, ImageFont
|
20 |
+
|
21 |
+
from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords,
|
22 |
+
increment_path, is_ascii, threaded, try_except, xywh2xyxy, xyxy2xywh)
|
23 |
+
from utils.metrics import fitness
|
24 |
+
|
25 |
+
# Settings
|
26 |
+
RANK = int(os.getenv('RANK', -1))
|
27 |
+
matplotlib.rc('font', **{'size': 11})
|
28 |
+
matplotlib.use('Agg') # for writing to files only
|
29 |
+
|
30 |
+
|
31 |
+
class Colors:
|
32 |
+
# Ultralytics color palette https://ultralytics.com/
|
33 |
+
def __init__(self):
|
34 |
+
# hex = matplotlib.colors.TABLEAU_COLORS.values()
|
35 |
+
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
|
36 |
+
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
|
37 |
+
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
|
38 |
+
self.n = len(self.palette)
|
39 |
+
|
40 |
+
def __call__(self, i, bgr=False):
|
41 |
+
c = self.palette[int(i) % self.n]
|
42 |
+
return (c[2], c[1], c[0]) if bgr else c
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def hex2rgb(h): # rgb order (PIL)
|
46 |
+
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
47 |
+
|
48 |
+
|
49 |
+
colors = Colors() # create instance for 'from utils.plots import colors'
|
50 |
+
|
51 |
+
|
52 |
+
def check_pil_font(font=FONT, size=10):
|
53 |
+
# Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
|
54 |
+
font = Path(font)
|
55 |
+
font = font if font.exists() else (CONFIG_DIR / font.name)
|
56 |
+
try:
|
57 |
+
return ImageFont.truetype(str(font) if font.exists() else font.name, size)
|
58 |
+
except Exception: # download if missing
|
59 |
+
try:
|
60 |
+
check_font(font)
|
61 |
+
return ImageFont.truetype(str(font), size)
|
62 |
+
except TypeError:
|
63 |
+
check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374
|
64 |
+
except URLError: # not online
|
65 |
+
return ImageFont.load_default()
|
66 |
+
|
67 |
+
|
68 |
+
class Annotator:
|
69 |
+
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
|
70 |
+
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
71 |
+
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
|
72 |
+
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
|
73 |
+
self.pil = pil or non_ascii
|
74 |
+
if self.pil: # use PIL
|
75 |
+
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
|
76 |
+
self.draw = ImageDraw.Draw(self.im)
|
77 |
+
self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
|
78 |
+
size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
|
79 |
+
else: # use cv2
|
80 |
+
self.im = im
|
81 |
+
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
|
82 |
+
|
83 |
+
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
|
84 |
+
# Add one xyxy box to image with label
|
85 |
+
if self.pil or not is_ascii(label):
|
86 |
+
self.draw.rectangle(box, width=self.lw, outline=color) # box
|
87 |
+
if label:
|
88 |
+
w, h = self.font.getsize(label) # text width, height
|
89 |
+
outside = box[1] - h >= 0 # label fits outside box
|
90 |
+
self.draw.rectangle(
|
91 |
+
(box[0], box[1] - h if outside else box[1], box[0] + w + 1,
|
92 |
+
box[1] + 1 if outside else box[1] + h + 1),
|
93 |
+
fill=color,
|
94 |
+
)
|
95 |
+
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0
|
96 |
+
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
|
97 |
+
else: # cv2
|
98 |
+
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
|
99 |
+
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
|
100 |
+
if label:
|
101 |
+
tf = max(self.lw - 1, 1) # font thickness
|
102 |
+
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
|
103 |
+
outside = p1[1] - h >= 3
|
104 |
+
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
|
105 |
+
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
|
106 |
+
cv2.putText(self.im,
|
107 |
+
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
|
108 |
+
0,
|
109 |
+
self.lw / 3,
|
110 |
+
txt_color,
|
111 |
+
thickness=tf,
|
112 |
+
lineType=cv2.LINE_AA)
|
113 |
+
|
114 |
+
def rectangle(self, xy, fill=None, outline=None, width=1):
|
115 |
+
# Add rectangle to image (PIL-only)
|
116 |
+
self.draw.rectangle(xy, fill, outline, width)
|
117 |
+
|
118 |
+
def text(self, xy, text, txt_color=(255, 255, 255)):
|
119 |
+
# Add text to image (PIL-only)
|
120 |
+
w, h = self.font.getsize(text) # text width, height
|
121 |
+
self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
|
122 |
+
|
123 |
+
def result(self):
|
124 |
+
# Return annotated image as array
|
125 |
+
return np.asarray(self.im)
|
126 |
+
|
127 |
+
|
128 |
+
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
|
129 |
+
"""
|
130 |
+
x: Features to be visualized
|
131 |
+
module_type: Module type
|
132 |
+
stage: Module stage within model
|
133 |
+
n: Maximum number of feature maps to plot
|
134 |
+
save_dir: Directory to save results
|
135 |
+
"""
|
136 |
+
if 'Detect' not in module_type:
|
137 |
+
batch, channels, height, width = x.shape # batch, channels, height, width
|
138 |
+
if height > 1 and width > 1:
|
139 |
+
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
140 |
+
|
141 |
+
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
142 |
+
n = min(n, channels) # number of plots
|
143 |
+
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
144 |
+
ax = ax.ravel()
|
145 |
+
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
146 |
+
for i in range(n):
|
147 |
+
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
148 |
+
ax[i].axis('off')
|
149 |
+
|
150 |
+
LOGGER.info(f'Saving {f}... ({n}/{channels})')
|
151 |
+
plt.savefig(f, dpi=300, bbox_inches='tight')
|
152 |
+
plt.close()
|
153 |
+
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save
|
154 |
+
|
155 |
+
|
156 |
+
def hist2d(x, y, n=100):
|
157 |
+
# 2d histogram used in labels.png and evolve.png
|
158 |
+
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
159 |
+
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
160 |
+
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
161 |
+
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
162 |
+
return np.log(hist[xidx, yidx])
|
163 |
+
|
164 |
+
|
165 |
+
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
166 |
+
from scipy.signal import butter, filtfilt
|
167 |
+
|
168 |
+
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
169 |
+
def butter_lowpass(cutoff, fs, order):
|
170 |
+
nyq = 0.5 * fs
|
171 |
+
normal_cutoff = cutoff / nyq
|
172 |
+
return butter(order, normal_cutoff, btype='low', analog=False)
|
173 |
+
|
174 |
+
b, a = butter_lowpass(cutoff, fs, order=order)
|
175 |
+
return filtfilt(b, a, data) # forward-backward filter
|
176 |
+
|
177 |
+
|
178 |
+
def output_to_target(output):
|
179 |
+
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
180 |
+
targets = []
|
181 |
+
for i, o in enumerate(output):
|
182 |
+
for *box, conf, cls in o.cpu().numpy():
|
183 |
+
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
|
184 |
+
return np.array(targets)
|
185 |
+
|
186 |
+
|
187 |
+
@threaded
|
188 |
+
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
|
189 |
+
# Plot image grid with labels
|
190 |
+
if isinstance(images, torch.Tensor):
|
191 |
+
images = images.cpu().float().numpy()
|
192 |
+
if isinstance(targets, torch.Tensor):
|
193 |
+
targets = targets.cpu().numpy()
|
194 |
+
if np.max(images[0]) <= 1:
|
195 |
+
images *= 255 # de-normalise (optional)
|
196 |
+
bs, _, h, w = images.shape # batch size, _, height, width
|
197 |
+
bs = min(bs, max_subplots) # limit plot images
|
198 |
+
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
199 |
+
|
200 |
+
# Build Image
|
201 |
+
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
202 |
+
for i, im in enumerate(images):
|
203 |
+
if i == max_subplots: # if last batch has fewer images than we expect
|
204 |
+
break
|
205 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
206 |
+
im = im.transpose(1, 2, 0)
|
207 |
+
mosaic[y:y + h, x:x + w, :] = im
|
208 |
+
|
209 |
+
# Resize (optional)
|
210 |
+
scale = max_size / ns / max(h, w)
|
211 |
+
if scale < 1:
|
212 |
+
h = math.ceil(scale * h)
|
213 |
+
w = math.ceil(scale * w)
|
214 |
+
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
215 |
+
|
216 |
+
# Annotate
|
217 |
+
fs = int((h + w) * ns * 0.01) # font size
|
218 |
+
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
219 |
+
for i in range(i + 1):
|
220 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
221 |
+
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
222 |
+
if paths:
|
223 |
+
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
224 |
+
if len(targets) > 0:
|
225 |
+
ti = targets[targets[:, 0] == i] # image targets
|
226 |
+
boxes = xywh2xyxy(ti[:, 2:6]).T
|
227 |
+
classes = ti[:, 1].astype('int')
|
228 |
+
labels = ti.shape[1] == 6 # labels if no conf column
|
229 |
+
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
230 |
+
|
231 |
+
if boxes.shape[1]:
|
232 |
+
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
233 |
+
boxes[[0, 2]] *= w # scale to pixels
|
234 |
+
boxes[[1, 3]] *= h
|
235 |
+
elif scale < 1: # absolute coords need scale if image scales
|
236 |
+
boxes *= scale
|
237 |
+
boxes[[0, 2]] += x
|
238 |
+
boxes[[1, 3]] += y
|
239 |
+
for j, box in enumerate(boxes.T.tolist()):
|
240 |
+
cls = classes[j]
|
241 |
+
color = colors(cls)
|
242 |
+
cls = names[cls] if names else cls
|
243 |
+
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
244 |
+
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
245 |
+
annotator.box_label(box, label, color=color)
|
246 |
+
annotator.im.save(fname) # save
|
247 |
+
|
248 |
+
|
249 |
+
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
250 |
+
# Plot LR simulating training for full epochs
|
251 |
+
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
252 |
+
y = []
|
253 |
+
for _ in range(epochs):
|
254 |
+
scheduler.step()
|
255 |
+
y.append(optimizer.param_groups[0]['lr'])
|
256 |
+
plt.plot(y, '.-', label='LR')
|
257 |
+
plt.xlabel('epoch')
|
258 |
+
plt.ylabel('LR')
|
259 |
+
plt.grid()
|
260 |
+
plt.xlim(0, epochs)
|
261 |
+
plt.ylim(0)
|
262 |
+
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
263 |
+
plt.close()
|
264 |
+
|
265 |
+
|
266 |
+
def plot_val_txt(): # from utils.plots import *; plot_val()
|
267 |
+
# Plot val.txt histograms
|
268 |
+
x = np.loadtxt('val.txt', dtype=np.float32)
|
269 |
+
box = xyxy2xywh(x[:, :4])
|
270 |
+
cx, cy = box[:, 0], box[:, 1]
|
271 |
+
|
272 |
+
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
273 |
+
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
274 |
+
ax.set_aspect('equal')
|
275 |
+
plt.savefig('hist2d.png', dpi=300)
|
276 |
+
|
277 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
278 |
+
ax[0].hist(cx, bins=600)
|
279 |
+
ax[1].hist(cy, bins=600)
|
280 |
+
plt.savefig('hist1d.png', dpi=200)
|
281 |
+
|
282 |
+
|
283 |
+
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
284 |
+
# Plot targets.txt histograms
|
285 |
+
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
286 |
+
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
287 |
+
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
288 |
+
ax = ax.ravel()
|
289 |
+
for i in range(4):
|
290 |
+
ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
|
291 |
+
ax[i].legend()
|
292 |
+
ax[i].set_title(s[i])
|
293 |
+
plt.savefig('targets.jpg', dpi=200)
|
294 |
+
|
295 |
+
|
296 |
+
def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study()
|
297 |
+
# Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
|
298 |
+
save_dir = Path(file).parent if file else Path(dir)
|
299 |
+
plot2 = False # plot additional results
|
300 |
+
if plot2:
|
301 |
+
ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
|
302 |
+
|
303 |
+
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
304 |
+
# for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
|
305 |
+
for f in sorted(save_dir.glob('study*.txt')):
|
306 |
+
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
307 |
+
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
308 |
+
if plot2:
|
309 |
+
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
|
310 |
+
for i in range(7):
|
311 |
+
ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
312 |
+
ax[i].set_title(s[i])
|
313 |
+
|
314 |
+
j = y[3].argmax() + 1
|
315 |
+
ax2.plot(y[5, 1:j],
|
316 |
+
y[3, 1:j] * 1E2,
|
317 |
+
'.-',
|
318 |
+
linewidth=2,
|
319 |
+
markersize=8,
|
320 |
+
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
321 |
+
|
322 |
+
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
323 |
+
'k.-',
|
324 |
+
linewidth=2,
|
325 |
+
markersize=8,
|
326 |
+
alpha=.25,
|
327 |
+
label='EfficientDet')
|
328 |
+
|
329 |
+
ax2.grid(alpha=0.2)
|
330 |
+
ax2.set_yticks(np.arange(20, 60, 5))
|
331 |
+
ax2.set_xlim(0, 57)
|
332 |
+
ax2.set_ylim(25, 55)
|
333 |
+
ax2.set_xlabel('GPU Speed (ms/img)')
|
334 |
+
ax2.set_ylabel('COCO AP val')
|
335 |
+
ax2.legend(loc='lower right')
|
336 |
+
f = save_dir / 'study.png'
|
337 |
+
print(f'Saving {f}...')
|
338 |
+
plt.savefig(f, dpi=300)
|
339 |
+
|
340 |
+
|
341 |
+
@try_except # known issue https://github.com/ultralytics/yolov5/issues/5395
|
342 |
+
@Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611
|
343 |
+
def plot_labels(labels, names=(), save_dir=Path('')):
|
344 |
+
# plot dataset labels
|
345 |
+
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
|
346 |
+
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
347 |
+
nc = int(c.max() + 1) # number of classes
|
348 |
+
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
349 |
+
|
350 |
+
# seaborn correlogram
|
351 |
+
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
352 |
+
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
353 |
+
plt.close()
|
354 |
+
|
355 |
+
# matplotlib labels
|
356 |
+
matplotlib.use('svg') # faster
|
357 |
+
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
358 |
+
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
359 |
+
try: # color histogram bars by class
|
360 |
+
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
|
361 |
+
except Exception:
|
362 |
+
pass
|
363 |
+
ax[0].set_ylabel('instances')
|
364 |
+
if 0 < len(names) < 30:
|
365 |
+
ax[0].set_xticks(range(len(names)))
|
366 |
+
ax[0].set_xticklabels(names, rotation=90, fontsize=10)
|
367 |
+
else:
|
368 |
+
ax[0].set_xlabel('classes')
|
369 |
+
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
370 |
+
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
371 |
+
|
372 |
+
# rectangles
|
373 |
+
labels[:, 1:3] = 0.5 # center
|
374 |
+
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
375 |
+
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
376 |
+
for cls, *box in labels[:1000]:
|
377 |
+
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
|
378 |
+
ax[1].imshow(img)
|
379 |
+
ax[1].axis('off')
|
380 |
+
|
381 |
+
for a in [0, 1, 2, 3]:
|
382 |
+
for s in ['top', 'right', 'left', 'bottom']:
|
383 |
+
ax[a].spines[s].set_visible(False)
|
384 |
+
|
385 |
+
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
386 |
+
matplotlib.use('Agg')
|
387 |
+
plt.close()
|
388 |
+
|
389 |
+
|
390 |
+
def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve()
|
391 |
+
# Plot evolve.csv hyp evolution results
|
392 |
+
evolve_csv = Path(evolve_csv)
|
393 |
+
data = pd.read_csv(evolve_csv)
|
394 |
+
keys = [x.strip() for x in data.columns]
|
395 |
+
x = data.values
|
396 |
+
f = fitness(x)
|
397 |
+
j = np.argmax(f) # max fitness index
|
398 |
+
plt.figure(figsize=(10, 12), tight_layout=True)
|
399 |
+
matplotlib.rc('font', **{'size': 8})
|
400 |
+
print(f'Best results from row {j} of {evolve_csv}:')
|
401 |
+
for i, k in enumerate(keys[7:]):
|
402 |
+
v = x[:, 7 + i]
|
403 |
+
mu = v[j] # best single result
|
404 |
+
plt.subplot(6, 5, i + 1)
|
405 |
+
plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
406 |
+
plt.plot(mu, f.max(), 'k+', markersize=15)
|
407 |
+
plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters
|
408 |
+
if i % 5 != 0:
|
409 |
+
plt.yticks([])
|
410 |
+
print(f'{k:>15}: {mu:.3g}')
|
411 |
+
f = evolve_csv.with_suffix('.png') # filename
|
412 |
+
plt.savefig(f, dpi=200)
|
413 |
+
plt.close()
|
414 |
+
print(f'Saved {f}')
|
415 |
+
|
416 |
+
|
417 |
+
def plot_results(file='path/to/results.csv', dir=''):
|
418 |
+
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
419 |
+
save_dir = Path(file).parent if file else Path(dir)
|
420 |
+
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
421 |
+
ax = ax.ravel()
|
422 |
+
files = list(save_dir.glob('results*.csv'))
|
423 |
+
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
|
424 |
+
for f in files:
|
425 |
+
try:
|
426 |
+
data = pd.read_csv(f)
|
427 |
+
s = [x.strip() for x in data.columns]
|
428 |
+
x = data.values[:, 0]
|
429 |
+
for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
|
430 |
+
y = data.values[:, j].astype('float')
|
431 |
+
# y[y == 0] = np.nan # don't show zero values
|
432 |
+
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
|
433 |
+
ax[i].set_title(s[j], fontsize=12)
|
434 |
+
# if j in [8, 9, 10]: # share train and val loss y axes
|
435 |
+
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
436 |
+
except Exception as e:
|
437 |
+
LOGGER.info(f'Warning: Plotting error for {f}: {e}')
|
438 |
+
ax[1].legend()
|
439 |
+
fig.savefig(save_dir / 'results.png', dpi=200)
|
440 |
+
plt.close()
|
441 |
+
|
442 |
+
|
443 |
+
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
444 |
+
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
445 |
+
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
446 |
+
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
447 |
+
files = list(Path(save_dir).glob('frames*.txt'))
|
448 |
+
for fi, f in enumerate(files):
|
449 |
+
try:
|
450 |
+
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
451 |
+
n = results.shape[1] # number of rows
|
452 |
+
x = np.arange(start, min(stop, n) if stop else n)
|
453 |
+
results = results[:, x]
|
454 |
+
t = (results[0] - results[0].min()) # set t0=0s
|
455 |
+
results[0] = x
|
456 |
+
for i, a in enumerate(ax):
|
457 |
+
if i < len(results):
|
458 |
+
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
459 |
+
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
460 |
+
a.set_title(s[i])
|
461 |
+
a.set_xlabel('time (s)')
|
462 |
+
# if fi == len(files) - 1:
|
463 |
+
# a.set_ylim(bottom=0)
|
464 |
+
for side in ['top', 'right']:
|
465 |
+
a.spines[side].set_visible(False)
|
466 |
+
else:
|
467 |
+
a.remove()
|
468 |
+
except Exception as e:
|
469 |
+
print(f'Warning: Plotting error for {f}; {e}')
|
470 |
+
ax[1].legend()
|
471 |
+
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
472 |
+
|
473 |
+
|
474 |
+
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
|
475 |
+
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
|
476 |
+
xyxy = torch.tensor(xyxy).view(-1, 4)
|
477 |
+
b = xyxy2xywh(xyxy) # boxes
|
478 |
+
if square:
|
479 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square
|
480 |
+
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad
|
481 |
+
xyxy = xywh2xyxy(b).long()
|
482 |
+
clip_coords(xyxy, im.shape)
|
483 |
+
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
|
484 |
+
if save:
|
485 |
+
file.parent.mkdir(parents=True, exist_ok=True) # make directory
|
486 |
+
f = str(increment_path(file).with_suffix('.jpg'))
|
487 |
+
# cv2.imwrite(f, crop) # https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue
|
488 |
+
Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)).save(f, quality=95, subsampling=0)
|
489 |
+
return crop
|
utils/torch_utils.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
PyTorch utils
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import platform
|
9 |
+
import subprocess
|
10 |
+
import time
|
11 |
+
import warnings
|
12 |
+
from contextlib import contextmanager
|
13 |
+
from copy import deepcopy
|
14 |
+
from pathlib import Path
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.distributed as dist
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
|
21 |
+
from utils.general import LOGGER, file_date, git_describe
|
22 |
+
|
23 |
+
try:
|
24 |
+
import thop # for FLOPs computation
|
25 |
+
except ImportError:
|
26 |
+
thop = None
|
27 |
+
|
28 |
+
# Suppress PyTorch warnings
|
29 |
+
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
|
30 |
+
|
31 |
+
|
32 |
+
@contextmanager
|
33 |
+
def torch_distributed_zero_first(local_rank: int):
|
34 |
+
# Decorator to make all processes in distributed training wait for each local_master to do something
|
35 |
+
if local_rank not in [-1, 0]:
|
36 |
+
dist.barrier(device_ids=[local_rank])
|
37 |
+
yield
|
38 |
+
if local_rank == 0:
|
39 |
+
dist.barrier(device_ids=[0])
|
40 |
+
|
41 |
+
|
42 |
+
def device_count():
|
43 |
+
# Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows
|
44 |
+
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows'
|
45 |
+
try:
|
46 |
+
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows
|
47 |
+
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
|
48 |
+
except Exception:
|
49 |
+
return 0
|
50 |
+
|
51 |
+
|
52 |
+
def select_device(device='', batch_size=0, newline=True):
|
53 |
+
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
54 |
+
s = f'YOLOv5 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} '
|
55 |
+
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
56 |
+
cpu = device == 'cpu'
|
57 |
+
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
58 |
+
if cpu or mps:
|
59 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
60 |
+
elif device: # non-cpu device requested
|
61 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
62 |
+
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
63 |
+
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
64 |
+
|
65 |
+
if not (cpu or mps) and torch.cuda.is_available(): # prefer GPU if available
|
66 |
+
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
67 |
+
n = len(devices) # device count
|
68 |
+
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
69 |
+
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
70 |
+
space = ' ' * (len(s) + 1)
|
71 |
+
for i, d in enumerate(devices):
|
72 |
+
p = torch.cuda.get_device_properties(i)
|
73 |
+
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
74 |
+
arg = 'cuda:0'
|
75 |
+
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
76 |
+
s += 'MPS\n'
|
77 |
+
arg = 'mps'
|
78 |
+
else: # revert to CPU
|
79 |
+
s += 'CPU\n'
|
80 |
+
arg = 'cpu'
|
81 |
+
|
82 |
+
if not newline:
|
83 |
+
s = s.rstrip()
|
84 |
+
LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
85 |
+
return torch.device(arg)
|
86 |
+
|
87 |
+
|
88 |
+
def time_sync():
|
89 |
+
# PyTorch-accurate time
|
90 |
+
if torch.cuda.is_available():
|
91 |
+
torch.cuda.synchronize()
|
92 |
+
return time.time()
|
93 |
+
|
94 |
+
|
95 |
+
def profile(input, ops, n=10, device=None):
|
96 |
+
# YOLOv5 speed/memory/FLOPs profiler
|
97 |
+
#
|
98 |
+
# Usage:
|
99 |
+
# input = torch.randn(16, 3, 640, 640)
|
100 |
+
# m1 = lambda x: x * torch.sigmoid(x)
|
101 |
+
# m2 = nn.SiLU()
|
102 |
+
# profile(input, [m1, m2], n=100) # profile over 100 iterations
|
103 |
+
|
104 |
+
results = []
|
105 |
+
if not isinstance(device, torch.device):
|
106 |
+
device = select_device(device)
|
107 |
+
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
|
108 |
+
f"{'input':>24s}{'output':>24s}")
|
109 |
+
|
110 |
+
for x in input if isinstance(input, list) else [input]:
|
111 |
+
x = x.to(device)
|
112 |
+
x.requires_grad = True
|
113 |
+
for m in ops if isinstance(ops, list) else [ops]:
|
114 |
+
m = m.to(device) if hasattr(m, 'to') else m # device
|
115 |
+
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
116 |
+
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
117 |
+
try:
|
118 |
+
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs
|
119 |
+
except Exception:
|
120 |
+
flops = 0
|
121 |
+
|
122 |
+
try:
|
123 |
+
for _ in range(n):
|
124 |
+
t[0] = time_sync()
|
125 |
+
y = m(x)
|
126 |
+
t[1] = time_sync()
|
127 |
+
try:
|
128 |
+
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
|
129 |
+
t[2] = time_sync()
|
130 |
+
except Exception: # no backward method
|
131 |
+
# print(e) # for debug
|
132 |
+
t[2] = float('nan')
|
133 |
+
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
134 |
+
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
135 |
+
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB)
|
136 |
+
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes
|
137 |
+
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
|
138 |
+
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
139 |
+
results.append([p, flops, mem, tf, tb, s_in, s_out])
|
140 |
+
except Exception as e:
|
141 |
+
print(e)
|
142 |
+
results.append(None)
|
143 |
+
torch.cuda.empty_cache()
|
144 |
+
return results
|
145 |
+
|
146 |
+
|
147 |
+
def is_parallel(model):
|
148 |
+
# Returns True if model is of type DP or DDP
|
149 |
+
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
150 |
+
|
151 |
+
|
152 |
+
def de_parallel(model):
|
153 |
+
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
154 |
+
return model.module if is_parallel(model) else model
|
155 |
+
|
156 |
+
|
157 |
+
def initialize_weights(model):
|
158 |
+
for m in model.modules():
|
159 |
+
t = type(m)
|
160 |
+
if t is nn.Conv2d:
|
161 |
+
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
162 |
+
elif t is nn.BatchNorm2d:
|
163 |
+
m.eps = 1e-3
|
164 |
+
m.momentum = 0.03
|
165 |
+
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
166 |
+
m.inplace = True
|
167 |
+
|
168 |
+
|
169 |
+
def find_modules(model, mclass=nn.Conv2d):
|
170 |
+
# Finds layer indices matching module class 'mclass'
|
171 |
+
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
172 |
+
|
173 |
+
|
174 |
+
def sparsity(model):
|
175 |
+
# Return global model sparsity
|
176 |
+
a, b = 0, 0
|
177 |
+
for p in model.parameters():
|
178 |
+
a += p.numel()
|
179 |
+
b += (p == 0).sum()
|
180 |
+
return b / a
|
181 |
+
|
182 |
+
|
183 |
+
def prune(model, amount=0.3):
|
184 |
+
# Prune model to requested global sparsity
|
185 |
+
import torch.nn.utils.prune as prune
|
186 |
+
print('Pruning model... ', end='')
|
187 |
+
for name, m in model.named_modules():
|
188 |
+
if isinstance(m, nn.Conv2d):
|
189 |
+
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
190 |
+
prune.remove(m, 'weight') # make permanent
|
191 |
+
print(' %.3g global sparsity' % sparsity(model))
|
192 |
+
|
193 |
+
|
194 |
+
def fuse_conv_and_bn(conv, bn):
|
195 |
+
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
196 |
+
fusedconv = nn.Conv2d(conv.in_channels,
|
197 |
+
conv.out_channels,
|
198 |
+
kernel_size=conv.kernel_size,
|
199 |
+
stride=conv.stride,
|
200 |
+
padding=conv.padding,
|
201 |
+
groups=conv.groups,
|
202 |
+
bias=True).requires_grad_(False).to(conv.weight.device)
|
203 |
+
|
204 |
+
# Prepare filters
|
205 |
+
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
206 |
+
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
207 |
+
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
208 |
+
|
209 |
+
# Prepare spatial bias
|
210 |
+
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
211 |
+
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
212 |
+
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
213 |
+
|
214 |
+
return fusedconv
|
215 |
+
|
216 |
+
|
217 |
+
def model_info(model, verbose=False, img_size=640):
|
218 |
+
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
219 |
+
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
220 |
+
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
221 |
+
if verbose:
|
222 |
+
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
|
223 |
+
for i, (name, p) in enumerate(model.named_parameters()):
|
224 |
+
name = name.replace('module_list.', '')
|
225 |
+
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
226 |
+
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
227 |
+
|
228 |
+
try: # FLOPs
|
229 |
+
from thop import profile
|
230 |
+
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
|
231 |
+
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
232 |
+
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
|
233 |
+
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
234 |
+
fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs
|
235 |
+
except Exception:
|
236 |
+
fs = ''
|
237 |
+
|
238 |
+
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
|
239 |
+
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
240 |
+
|
241 |
+
|
242 |
+
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
243 |
+
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
244 |
+
if ratio == 1.0:
|
245 |
+
return img
|
246 |
+
h, w = img.shape[2:]
|
247 |
+
s = (int(h * ratio), int(w * ratio)) # new size
|
248 |
+
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
249 |
+
if not same_shape: # pad/crop img
|
250 |
+
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
251 |
+
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
252 |
+
|
253 |
+
|
254 |
+
def copy_attr(a, b, include=(), exclude=()):
|
255 |
+
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
256 |
+
for k, v in b.__dict__.items():
|
257 |
+
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
258 |
+
continue
|
259 |
+
else:
|
260 |
+
setattr(a, k, v)
|
261 |
+
|
262 |
+
|
263 |
+
class EarlyStopping:
|
264 |
+
# YOLOv5 simple early stopper
|
265 |
+
def __init__(self, patience=30):
|
266 |
+
self.best_fitness = 0.0 # i.e. mAP
|
267 |
+
self.best_epoch = 0
|
268 |
+
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop
|
269 |
+
self.possible_stop = False # possible stop may occur next epoch
|
270 |
+
|
271 |
+
def __call__(self, epoch, fitness):
|
272 |
+
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
|
273 |
+
self.best_epoch = epoch
|
274 |
+
self.best_fitness = fitness
|
275 |
+
delta = epoch - self.best_epoch # epochs without improvement
|
276 |
+
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
|
277 |
+
stop = delta >= self.patience # stop training if patience exceeded
|
278 |
+
if stop:
|
279 |
+
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
|
280 |
+
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
|
281 |
+
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
|
282 |
+
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
|
283 |
+
return stop
|
284 |
+
|
285 |
+
|
286 |
+
class ModelEMA:
|
287 |
+
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
|
288 |
+
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
289 |
+
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
293 |
+
# Create EMA
|
294 |
+
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
295 |
+
# if next(model.parameters()).device.type != 'cpu':
|
296 |
+
# self.ema.half() # FP16 EMA
|
297 |
+
self.updates = updates # number of EMA updates
|
298 |
+
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
299 |
+
for p in self.ema.parameters():
|
300 |
+
p.requires_grad_(False)
|
301 |
+
|
302 |
+
def update(self, model):
|
303 |
+
# Update EMA parameters
|
304 |
+
with torch.no_grad():
|
305 |
+
self.updates += 1
|
306 |
+
d = self.decay(self.updates)
|
307 |
+
|
308 |
+
msd = de_parallel(model).state_dict() # model state_dict
|
309 |
+
for k, v in self.ema.state_dict().items():
|
310 |
+
if v.dtype.is_floating_point:
|
311 |
+
v *= d
|
312 |
+
v += (1 - d) * msd[k].detach()
|
313 |
+
|
314 |
+
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
315 |
+
# Update EMA attributes
|
316 |
+
copy_attr(self.ema, model, include, exclude)
|
val.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
+
"""
|
3 |
+
Validate a trained YOLOv5 model accuracy on a custom dataset
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
$ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
|
7 |
+
|
8 |
+
Usage - formats:
|
9 |
+
$ python path/to/val.py --weights yolov5s.pt # PyTorch
|
10 |
+
yolov5s.torchscript # TorchScript
|
11 |
+
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
12 |
+
yolov5s.xml # OpenVINO
|
13 |
+
yolov5s.engine # TensorRT
|
14 |
+
yolov5s.mlmodel # CoreML (macOS-only)
|
15 |
+
yolov5s_saved_model # TensorFlow SavedModel
|
16 |
+
yolov5s.pb # TensorFlow GraphDef
|
17 |
+
yolov5s.tflite # TensorFlow Lite
|
18 |
+
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
19 |
+
"""
|
20 |
+
|
21 |
+
import argparse
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
import sys
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
FILE = Path(__file__).resolve()
|
32 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
33 |
+
if str(ROOT) not in sys.path:
|
34 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
35 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
36 |
+
|
37 |
+
from models.common import DetectMultiBackend
|
38 |
+
from utils.callbacks import Callbacks
|
39 |
+
from utils.dataloaders import create_dataloader
|
40 |
+
from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
|
41 |
+
coco80_to_coco91_class, colorstr, emojis, increment_path, non_max_suppression, print_args,
|
42 |
+
scale_coords, xywh2xyxy, xyxy2xywh)
|
43 |
+
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
|
44 |
+
from utils.plots import output_to_target, plot_images, plot_val_study
|
45 |
+
from utils.torch_utils import select_device, time_sync
|
46 |
+
|
47 |
+
|
48 |
+
def save_one_txt(predn, save_conf, shape, file):
|
49 |
+
# Save one txt result
|
50 |
+
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
51 |
+
for *xyxy, conf, cls in predn.tolist():
|
52 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
53 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
54 |
+
with open(file, 'a') as f:
|
55 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
56 |
+
|
57 |
+
|
58 |
+
def save_one_json(predn, jdict, path, class_map):
|
59 |
+
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
60 |
+
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
61 |
+
box = xyxy2xywh(predn[:, :4]) # xywh
|
62 |
+
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
63 |
+
for p, b in zip(predn.tolist(), box.tolist()):
|
64 |
+
jdict.append({
|
65 |
+
'image_id': image_id,
|
66 |
+
'category_id': class_map[int(p[5])],
|
67 |
+
'bbox': [round(x, 3) for x in b],
|
68 |
+
'score': round(p[4], 5)})
|
69 |
+
|
70 |
+
|
71 |
+
def process_batch(detections, labels, iouv):
|
72 |
+
"""
|
73 |
+
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
|
74 |
+
Arguments:
|
75 |
+
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
76 |
+
labels (Array[M, 5]), class, x1, y1, x2, y2
|
77 |
+
Returns:
|
78 |
+
correct (Array[N, 10]), for 10 IoU levels
|
79 |
+
"""
|
80 |
+
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
|
81 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
82 |
+
correct_class = labels[:, 0:1] == detections[:, 5]
|
83 |
+
for i in range(len(iouv)):
|
84 |
+
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
|
85 |
+
if x[0].shape[0]:
|
86 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
|
87 |
+
if x[0].shape[0] > 1:
|
88 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
89 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
90 |
+
# matches = matches[matches[:, 2].argsort()[::-1]]
|
91 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
92 |
+
correct[matches[:, 1].astype(int), i] = True
|
93 |
+
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
|
94 |
+
|
95 |
+
|
96 |
+
@torch.no_grad()
|
97 |
+
def run(
|
98 |
+
data,
|
99 |
+
weights=None, # model.pt path(s)
|
100 |
+
batch_size=32, # batch size
|
101 |
+
imgsz=640, # inference size (pixels)
|
102 |
+
conf_thres=0.001, # confidence threshold
|
103 |
+
iou_thres=0.6, # NMS IoU threshold
|
104 |
+
task='val', # train, val, test, speed or study
|
105 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
106 |
+
workers=8, # max dataloader workers (per RANK in DDP mode)
|
107 |
+
single_cls=False, # treat as single-class dataset
|
108 |
+
augment=False, # augmented inference
|
109 |
+
verbose=False, # verbose output
|
110 |
+
save_txt=False, # save results to *.txt
|
111 |
+
save_hybrid=False, # save label+prediction hybrid results to *.txt
|
112 |
+
save_conf=False, # save confidences in --save-txt labels
|
113 |
+
save_json=False, # save a COCO-JSON results file
|
114 |
+
project=ROOT / 'runs/val', # save to project/name
|
115 |
+
name='exp', # save to project/name
|
116 |
+
exist_ok=False, # existing project/name ok, do not increment
|
117 |
+
half=True, # use FP16 half-precision inference
|
118 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
119 |
+
model=None,
|
120 |
+
dataloader=None,
|
121 |
+
save_dir=Path(''),
|
122 |
+
plots=True,
|
123 |
+
callbacks=Callbacks(),
|
124 |
+
compute_loss=None,
|
125 |
+
):
|
126 |
+
# Initialize/load model and set device
|
127 |
+
training = model is not None
|
128 |
+
if training: # called by train.py
|
129 |
+
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
|
130 |
+
half &= device.type != 'cpu' # half precision only supported on CUDA
|
131 |
+
model.half() if half else model.float()
|
132 |
+
else: # called directly
|
133 |
+
device = select_device(device, batch_size=batch_size)
|
134 |
+
|
135 |
+
# Directories
|
136 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
137 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
138 |
+
|
139 |
+
# Load model
|
140 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
141 |
+
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
142 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
143 |
+
half = model.fp16 # FP16 supported on limited backends with CUDA
|
144 |
+
if engine:
|
145 |
+
batch_size = model.batch_size
|
146 |
+
else:
|
147 |
+
device = model.device
|
148 |
+
if not (pt or jit):
|
149 |
+
batch_size = 1 # export.py models default to batch-size 1
|
150 |
+
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
151 |
+
|
152 |
+
# Data
|
153 |
+
data = check_dataset(data) # check
|
154 |
+
|
155 |
+
# Configure
|
156 |
+
model.eval()
|
157 |
+
cuda = device.type != 'cpu'
|
158 |
+
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
|
159 |
+
nc = 1 if single_cls else int(data['nc']) # number of classes
|
160 |
+
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
|
161 |
+
niou = iouv.numel()
|
162 |
+
|
163 |
+
# Dataloader
|
164 |
+
if not training:
|
165 |
+
if pt and not single_cls: # check --weights are trained on --data
|
166 |
+
ncm = model.model.nc
|
167 |
+
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
|
168 |
+
f'classes). Pass correct combination of --weights and --data that are trained together.'
|
169 |
+
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
|
170 |
+
pad = 0.0 if task in ('speed', 'benchmark') else 0.5
|
171 |
+
rect = False if task == 'benchmark' else pt # square inference for benchmarks
|
172 |
+
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
173 |
+
dataloader = create_dataloader(data[task],
|
174 |
+
imgsz,
|
175 |
+
batch_size,
|
176 |
+
stride,
|
177 |
+
single_cls,
|
178 |
+
pad=pad,
|
179 |
+
rect=rect,
|
180 |
+
workers=workers,
|
181 |
+
prefix=colorstr(f'{task}: '))[0]
|
182 |
+
|
183 |
+
seen = 0
|
184 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
185 |
+
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
186 |
+
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
|
187 |
+
s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
188 |
+
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
189 |
+
loss = torch.zeros(3, device=device)
|
190 |
+
jdict, stats, ap, ap_class = [], [], [], []
|
191 |
+
callbacks.run('on_val_start')
|
192 |
+
pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
|
193 |
+
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
|
194 |
+
callbacks.run('on_val_batch_start')
|
195 |
+
t1 = time_sync()
|
196 |
+
if cuda:
|
197 |
+
im = im.to(device, non_blocking=True)
|
198 |
+
targets = targets.to(device)
|
199 |
+
im = im.half() if half else im.float() # uint8 to fp16/32
|
200 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
201 |
+
nb, _, height, width = im.shape # batch size, channels, height, width
|
202 |
+
t2 = time_sync()
|
203 |
+
dt[0] += t2 - t1
|
204 |
+
|
205 |
+
# Inference
|
206 |
+
out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
|
207 |
+
dt[1] += time_sync() - t2
|
208 |
+
|
209 |
+
# Loss
|
210 |
+
if compute_loss:
|
211 |
+
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
|
212 |
+
|
213 |
+
# NMS
|
214 |
+
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
|
215 |
+
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
216 |
+
t3 = time_sync()
|
217 |
+
out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
|
218 |
+
dt[2] += time_sync() - t3
|
219 |
+
|
220 |
+
# Metrics
|
221 |
+
for si, pred in enumerate(out):
|
222 |
+
labels = targets[targets[:, 0] == si, 1:]
|
223 |
+
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
|
224 |
+
path, shape = Path(paths[si]), shapes[si][0]
|
225 |
+
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
|
226 |
+
seen += 1
|
227 |
+
|
228 |
+
if npr == 0:
|
229 |
+
if nl:
|
230 |
+
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
|
231 |
+
continue
|
232 |
+
|
233 |
+
# Predictions
|
234 |
+
if single_cls:
|
235 |
+
pred[:, 5] = 0
|
236 |
+
predn = pred.clone()
|
237 |
+
scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
|
238 |
+
|
239 |
+
# Evaluate
|
240 |
+
if nl:
|
241 |
+
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
242 |
+
scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
|
243 |
+
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
244 |
+
correct = process_batch(predn, labelsn, iouv)
|
245 |
+
if plots:
|
246 |
+
confusion_matrix.process_batch(predn, labelsn)
|
247 |
+
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
|
248 |
+
|
249 |
+
# Save/log
|
250 |
+
if save_txt:
|
251 |
+
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
|
252 |
+
if save_json:
|
253 |
+
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
|
254 |
+
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
|
255 |
+
|
256 |
+
# Plot images
|
257 |
+
if plots and batch_i < 3:
|
258 |
+
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
|
259 |
+
plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
|
260 |
+
|
261 |
+
callbacks.run('on_val_batch_end')
|
262 |
+
|
263 |
+
# Compute metrics
|
264 |
+
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
|
265 |
+
if len(stats) and stats[0].any():
|
266 |
+
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
267 |
+
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
268 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
269 |
+
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
|
270 |
+
else:
|
271 |
+
nt = torch.zeros(1)
|
272 |
+
|
273 |
+
# Print results
|
274 |
+
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
|
275 |
+
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
276 |
+
|
277 |
+
# Print results per class
|
278 |
+
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
279 |
+
for i, c in enumerate(ap_class):
|
280 |
+
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
281 |
+
|
282 |
+
# Print speeds
|
283 |
+
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
284 |
+
if not training:
|
285 |
+
shape = (batch_size, 3, imgsz, imgsz)
|
286 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
|
287 |
+
|
288 |
+
# Plots
|
289 |
+
if plots:
|
290 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
291 |
+
callbacks.run('on_val_end')
|
292 |
+
|
293 |
+
# Save JSON
|
294 |
+
if save_json and len(jdict):
|
295 |
+
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
296 |
+
anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
|
297 |
+
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
298 |
+
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
|
299 |
+
with open(pred_json, 'w') as f:
|
300 |
+
json.dump(jdict, f)
|
301 |
+
|
302 |
+
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
303 |
+
check_requirements(['pycocotools'])
|
304 |
+
from pycocotools.coco import COCO
|
305 |
+
from pycocotools.cocoeval import COCOeval
|
306 |
+
|
307 |
+
anno = COCO(anno_json) # init annotations api
|
308 |
+
pred = anno.loadRes(pred_json) # init predictions api
|
309 |
+
eval = COCOeval(anno, pred, 'bbox')
|
310 |
+
if is_coco:
|
311 |
+
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
|
312 |
+
eval.evaluate()
|
313 |
+
eval.accumulate()
|
314 |
+
eval.summarize()
|
315 |
+
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
316 |
+
except Exception as e:
|
317 |
+
LOGGER.info(f'pycocotools unable to run: {e}')
|
318 |
+
|
319 |
+
# Return results
|
320 |
+
model.float() # for training
|
321 |
+
if not training:
|
322 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
323 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
324 |
+
maps = np.zeros(nc) + map
|
325 |
+
for i, c in enumerate(ap_class):
|
326 |
+
maps[c] = ap[i]
|
327 |
+
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
328 |
+
|
329 |
+
|
330 |
+
def parse_opt():
|
331 |
+
parser = argparse.ArgumentParser()
|
332 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
333 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
|
334 |
+
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
|
335 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
336 |
+
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
|
337 |
+
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
|
338 |
+
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
339 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
340 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
341 |
+
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
342 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
343 |
+
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
344 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
345 |
+
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
346 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
347 |
+
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
|
348 |
+
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
|
349 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
350 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
351 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
352 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
353 |
+
opt = parser.parse_args()
|
354 |
+
opt.data = check_yaml(opt.data) # check YAML
|
355 |
+
opt.save_json |= opt.data.endswith('coco.yaml')
|
356 |
+
opt.save_txt |= opt.save_hybrid
|
357 |
+
print_args(vars(opt))
|
358 |
+
return opt
|
359 |
+
|
360 |
+
|
361 |
+
def main(opt):
|
362 |
+
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
|
363 |
+
|
364 |
+
if opt.task in ('train', 'val', 'test'): # run normally
|
365 |
+
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
|
366 |
+
LOGGER.info(emojis(f'WARNING: confidence threshold {opt.conf_thres} > 0.001 produces invalid results ⚠️'))
|
367 |
+
run(**vars(opt))
|
368 |
+
|
369 |
+
else:
|
370 |
+
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
|
371 |
+
opt.half = True # FP16 for fastest results
|
372 |
+
if opt.task == 'speed': # speed benchmarks
|
373 |
+
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
|
374 |
+
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
|
375 |
+
for opt.weights in weights:
|
376 |
+
run(**vars(opt), plots=False)
|
377 |
+
|
378 |
+
elif opt.task == 'study': # speed vs mAP benchmarks
|
379 |
+
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
|
380 |
+
for opt.weights in weights:
|
381 |
+
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
|
382 |
+
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
|
383 |
+
for opt.imgsz in x: # img-size
|
384 |
+
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
|
385 |
+
r, _, t = run(**vars(opt), plots=False)
|
386 |
+
y.append(r + t) # results and times
|
387 |
+
np.savetxt(f, y, fmt='%10.4g') # save
|
388 |
+
os.system('zip -r study.zip study_*.txt')
|
389 |
+
plot_val_study(x=x) # plot
|
390 |
+
|
391 |
+
|
392 |
+
if __name__ == "__main__":
|
393 |
+
opt = parse_opt()
|
394 |
+
main(opt)
|
yolov5_model_p5_p6_all.sh
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 P5 P6模型下载脚本
|
2 |
+
# 创建人:曾逸夫
|
3 |
+
# 创建时间:2022-06-01
|
4 |
+
|
5 |
+
cd ./models
|
6 |
+
|
7 |
+
yolov5_version="v6.1"
|
8 |
+
wget_download="wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/"
|
9 |
+
model_list=(yolov5n yolov5s yolov5m yolov5l yolov5x yolov5n6 yolov5s6 yolov5m6 yolov5l6 yolov5x6)
|
10 |
+
|
11 |
+
for i in ${model_list[*]}; do
|
12 |
+
$wget_download$yolov5_version$"/"$i$".pt"
|
13 |
+
echo $i"模型下载成功!"
|
14 |
+
done
|