Spaces:
Sleeping
Sleeping
File size: 8,538 Bytes
6522efc e1f7ca9 6522efc 282c65d a70684f e1f7ca9 a70684f b9a5070 a70684f e1f7ca9 a70684f 9e2d5fc a70684f 9e2d5fc a70684f 9e2d5fc a70684f 209b7fa ca7fe96 209b7fa ca7fe96 209b7fa a70684f 39ce8c5 5f6f892 a70684f 9e2d5fc a70684f ba1cce4 a70684f ba1cce4 b9a5070 88b518c cb9f4da b9a5070 cb9f4da b9a5070 a70684f 9e2d5fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
os.environ["HF_HOME"] = "/tmp/huggingface"
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import numpy as np
import pickle
import json
import logging
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import wordpunct_tokenize
nltk_data_path = os.path.join(os.path.dirname(__file__), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)
nltk.download('stopwords', download_dir=nltk_data_path, quiet=True)
nltk.download('wordnet', download_dir=nltk_data_path, quiet=True)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
INTENT_MODEL_PATH = os.path.join(BASE_DIR, "model")
RECOMMENDER_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model")
intent_model = None
intent_tokenizer = None
intent_classes = None
intent_thresholds = None
recommender = None
recommender_model_loaded = False
class BookRecommender:
def __init__(self, model_name='all-minilm-l6-v2'):
self.model_name = model_name
self.model = None
self.book_embeddings = None
self.df = None
self.stop_words = set(stopwords.words('english'))
self.lemmatizer = WordNetLemmatizer()
def preprocess_text(self, text):
if not isinstance(text, str):
return ""
text = text.lower()
text = re.sub(r'[^\w\s]', ' ', text)
tokens = wordpunct_tokenize(text)
tokens = [self.lemmatizer.lemmatize(word) for word in tokens if word not in self.stop_words]
return ' '.join(tokens)
def load_model(self, folder_path=RECOMMENDER_MODEL_PATH):
try:
print("π Loading recommender model...")
if not os.path.exists(folder_path):
print("β Recommender folder not found")
return False
with open(os.path.join(folder_path, "config.pkl"), 'rb') as f:
config = pickle.load(f)
self.model_name = config['model_name']
self.model = SentenceTransformer(os.path.join(folder_path, "sentence_transformer"))
with open(os.path.join(folder_path, "book_embeddings.pkl"), 'rb') as f:
self.book_embeddings = pickle.load(f)
with open(os.path.join(folder_path, "books_data.pkl"), 'rb') as f:
self.df = pickle.load(f)
print("β
Recommender model loaded")
return True
except Exception as e:
logger.error(f"Error loading model: {str(e)}", exc_info=True)
return False
def recommend_books(self, user_query, top_n=5, include_description=True):
if self.model is None or self.book_embeddings is None or self.df is None:
return []
try:
processed_query = self.preprocess_text(user_query)
user_embedding = self.model.encode([processed_query])
similarities = cosine_similarity(user_embedding, self.book_embeddings)[0]
similar_books_idx = np.argsort(similarities)[-top_n:][::-1]
recommendations = []
for i, idx in enumerate(similar_books_idx):
book_data = {
'title': str(self.df.iloc[idx].get('Title', '')),
'author': str(self.df.iloc[idx].get('Authors', '')),
'category': str(self.df.iloc[idx].get('Category', '')),
'year': str(self.df.iloc[idx].get('Publish Date (Year)', '')),
'description': str(self.df.iloc[idx].get('Description', '')[:197] + "...") if include_description and 'Description' in self.df.columns else '',
'relevance_score': float(similarities[idx]),
'rank': int(i + 1)
}
recommendations.append(book_data)
return recommendations
except Exception as e:
logger.error(f"Error generating recommendations: {str(e)}", exc_info=True)
return []
def load_ood_thresholds(model_path):
threshold_path = os.path.join(model_path, "ood_thresholds.json")
if os.path.exists(threshold_path):
with open(threshold_path, "r") as f:
return json.load(f)
return {"energy_threshold": 0.0, "msp_threshold": 0.5}
def load_intent_resources():
global intent_model, intent_tokenizer, intent_classes, intent_thresholds
try:
print("β³ Loading intent model from Hugging Face Hub (ZEROTSUDIOS/Bipa-Classification)")
intent_model = AutoModelForSequenceClassification.from_pretrained("ZEROTSUDIOS/Bipa-Classification")
intent_tokenizer = AutoTokenizer.from_pretrained("ZEROTSUDIOS/Bipa-Classification")
print("β
Remote model and tokenizer loaded")
with open(os.path.join(INTENT_MODEL_PATH, "intent_classes.pkl"), "rb") as f:
intent_classes = pickle.load(f)
intent_thresholds = load_ood_thresholds(INTENT_MODEL_PATH)
return True
except Exception as e:
print("β Failed to load intent resources:", e)
logger.error(f"Failed to load intent resources: {str(e)}", exc_info=True)
return False
def predict_intent(text, method='combined'):
inputs = intent_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = intent_model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=-1)
max_prob, pred_idx = torch.max(probs, dim=-1)
energy = -torch.logsumexp(logits, dim=-1)
is_ood = False
if method == 'energy':
is_ood = energy.item() > intent_thresholds['energy_threshold']
elif method == 'msp':
is_ood = max_prob.item() < intent_thresholds['msp_threshold']
elif method == 'combined':
is_ood = (energy.item() > intent_thresholds['energy_threshold']) and (max_prob.item() < intent_thresholds['msp_threshold'])
return {
"intent": intent_classes[pred_idx.item()],
"is_ood": is_ood,
"confidence": max_prob.item(),
"energy_score": energy.item(),
"class_probabilities": {
intent_classes[i]: float(prob)
for i, prob in enumerate(probs[0].numpy())
}
}
@app.route('/')
def root():
return jsonify({"status": "ok"})
@app.route('/api/health')
def health():
return jsonify({
"status": "running",
"intent_model_loaded": intent_model is not None,
"tokenizer_loaded": intent_tokenizer is not None,
"recommender_loaded": recommender_model_loaded
})
@app.route('/api/analyze', methods=['POST'])
def analyze():
if not request.is_json:
return jsonify({"error": "Request must be JSON"}), 400
data = request.get_json()
text = data.get('text')
method = data.get('method', 'combined')
result = predict_intent(text, method)
return jsonify(result)
@app.route('/api/recommend', methods=['POST'])
def recommend():
global recommender_model_loaded
if not recommender_model_loaded:
return jsonify({"error": "Recommendation model not loaded."}), 503
data = request.get_json()
query = data.get('query')
top_n = data.get('top_n', 5)
include_description = data.get('include_description', True)
threshold = data.get('threshold', 0.5)
if not query:
return jsonify({"error": "Missing query."}), 400
recommendations = recommender.recommend_books(query, top_n=top_n, include_description=include_description)
high_score = [rec for rec in recommendations if rec['relevance_score'] >= threshold]
low_score = [rec for rec in recommendations if rec['relevance_score'] < threshold]
return jsonify({
"query": query,
"threshold": threshold,
"high_recommendations": high_score,
"low_recommendations": low_score,
"total_count": len(recommendations),
"high_count": len(high_score),
"low_count": len(low_score)
})
print("βοΈ Initializing models...")
load_intent_resources()
recommender = BookRecommender()
recommender_model_loaded = recommender.load_model()
print("β
All models attempted to load")
|