Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -79,6 +79,31 @@ class BookRecommender:
|
|
| 79 |
logger.error(f"Error loading model: {str(e)}", exc_info=True)
|
| 80 |
return False
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def load_ood_thresholds(model_path):
|
| 83 |
threshold_path = os.path.join(model_path, "ood_thresholds.json")
|
| 84 |
if os.path.exists(threshold_path):
|
|
|
|
| 79 |
logger.error(f"Error loading model: {str(e)}", exc_info=True)
|
| 80 |
return False
|
| 81 |
|
| 82 |
+
def recommend_books(self, user_query, top_n=5, include_description=True):
|
| 83 |
+
if self.model is None or self.book_embeddings is None or self.df is None:
|
| 84 |
+
return []
|
| 85 |
+
try:
|
| 86 |
+
processed_query = self.preprocess_text(user_query)
|
| 87 |
+
user_embedding = self.model.encode([processed_query])
|
| 88 |
+
similarities = cosine_similarity(user_embedding, self.book_embeddings)[0]
|
| 89 |
+
similar_books_idx = np.argsort(similarities)[-top_n:][::-1]
|
| 90 |
+
recommendations = []
|
| 91 |
+
for i, idx in enumerate(similar_books_idx):
|
| 92 |
+
book_data = {
|
| 93 |
+
'title': self.df.iloc[idx].get('Title', ''),
|
| 94 |
+
'author': self.df.iloc[idx].get('Authors', ''),
|
| 95 |
+
'category': self.df.iloc[idx].get('Category', ''),
|
| 96 |
+
'year': self.df.iloc[idx].get('Publish Date (Year)', ''),
|
| 97 |
+
'description': self.df.iloc[idx].get('Description', '')[:197] + "..." if include_description and 'Description' in self.df.columns else '',
|
| 98 |
+
'relevance_score': float(similarities[idx]),
|
| 99 |
+
'rank': i + 1
|
| 100 |
+
}
|
| 101 |
+
recommendations.append(book_data)
|
| 102 |
+
return recommendations
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"Error generating recommendations: {str(e)}", exc_info=True)
|
| 105 |
+
return []
|
| 106 |
+
|
| 107 |
def load_ood_thresholds(model_path):
|
| 108 |
threshold_path = os.path.join(model_path, "ood_thresholds.json")
|
| 109 |
if os.path.exists(threshold_path):
|