File size: 10,414 Bytes
029e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from diffusers.models.attention_processor import Attention
from typing import Optional
from diffusers.models.embeddings import apply_rotary_emb


class FluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self, train_seq_len=512 + 64 * 64):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        self.train_seq_len = train_seq_len

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        proportional_attention=False,
    ) -> torch.FloatTensor:
        batch_size, _, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(
                    encoder_hidden_states_query_proj
                )
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(
                    encoder_hidden_states_key_proj
                )

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if proportional_attention:
            attention_scale = math.sqrt(
                math.log(key.size(2), self.train_seq_len) / head_dim
            )
        else:
            attention_scale = math.sqrt(1 / head_dim)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


class FluxAttnAdaptationProcessor2_0(nn.Module):
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self, rank=16, dim=3072, to_out=False, train_seq_len=512 + 64 * 64):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        self.to_q_a = nn.Linear(dim, rank, bias=False)
        self.to_q_b = nn.Linear(rank, dim, bias=False)
        self.to_q_b.weight.data = torch.zeros_like(self.to_q_b.weight.data)
        self.to_k_a = nn.Linear(dim, rank, bias=False)
        self.to_k_b = nn.Linear(rank, dim, bias=False)
        self.to_k_b.weight.data = torch.zeros_like(self.to_k_b.weight.data)
        self.to_v_a = nn.Linear(dim, rank, bias=False)
        self.to_v_b = nn.Linear(rank, dim, bias=False)
        self.to_v_b.weight.data = torch.zeros_like(self.to_v_b.weight.data)
        if to_out:
            self.to_out_a = nn.Linear(dim, rank, bias=False)
            self.to_out_b = nn.Linear(rank, dim, bias=False)
            self.to_out_b.weight.data = torch.zeros_like(self.to_out_b.weight.data)
        self.train_seq_len = train_seq_len

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        proportional_attention=False,
    ) -> torch.FloatTensor:
        batch_size, _, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        use_adaptation = True

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        if use_adaptation:
            query += self.to_q_b(self.to_q_a(hidden_states))
            key += self.to_k_b(self.to_k_a(hidden_states))
            value += self.to_v_b(self.to_v_a(hidden_states))

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(
                    encoder_hidden_states_query_proj
                )
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(
                    encoder_hidden_states_key_proj
                )

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if proportional_attention:
            attention_scale = math.sqrt(
                math.log(key.size(2), self.train_seq_len) / head_dim
            )
        else:
            attention_scale = math.sqrt(1 / head_dim)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, dropout_p=0.0, is_causal=False, scale=attention_scale
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = (
                (
                    attn.to_out[0](hidden_states)
                    + self.to_out_b(self.to_out_a(hidden_states))
                )
                if use_adaptation
                else attn.to_out[0](hidden_states)
            )
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states