File size: 5,238 Bytes
10e9b7d
 
eccf8e4
28371a0
c8461ca
28371a0
 
c8461ca
10e9b7d
e80aab9
3db6293
e80aab9
28371a0
c8461ca
 
 
 
 
 
 
 
 
28371a0
c8461ca
 
 
 
 
 
28371a0
c8461ca
 
 
 
 
 
 
28371a0
c8461ca
31243f4
c8461ca
28371a0
c8461ca
 
28371a0
dc2edb0
c8461ca
 
 
 
28371a0
 
 
0b2a728
28371a0
dc2edb0
a64f38b
7e4a06b
dc2edb0
7e4a06b
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
c8461ca
31243f4
 
dc2edb0
36ed51a
3c4371f
eccf8e4
31243f4
7d65c66
31243f4
7d65c66
dc2edb0
e80aab9
7d65c66
 
31243f4
 
 
28371a0
c8461ca
 
 
 
28371a0
c8461ca
28371a0
 
 
 
c8461ca
31243f4
 
 
c8461ca
7d65c66
 
31243f4
dc2edb0
31243f4
 
 
 
7d65c66
e80aab9
 
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
dc2edb0
7d65c66
dc2edb0
e80aab9
28371a0
e80aab9
c8461ca
dc2edb0
e514fd7
dc2edb0
 
 
 
7e4a06b
31243f4
9088b99
7d65c66
c8461ca
e80aab9
 
dc2edb0
c8461ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import gradio as gr
import requests
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
from pathlib import Path
import tempfile
import pandas as pd
import re

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- File Download Helper ---
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
    url = f"{base_api_url}/files/{task_id}"
    try:
        resp = requests.get(url, timeout=30)
        if resp.status_code == 404:
            return None
        resp.raise_for_status()
    except requests.exceptions.HTTPError as e:
        raise e

    cdisp = resp.headers.get("content-disposition", "")
    filename = task_id
    if "filename=" in cdisp:
        m = re.search(r'filename="([^\"]+)"', cdisp)
        if m:
            filename = m.group(1)

    tmp_dir = Path(tempfile.gettempdir()) / "gaia_files"
    tmp_dir.mkdir(exist_ok=True)
    file_path = tmp_dir / filename
    with open(file_path, "wb") as f:
        f.write(resp.content)
    return str(file_path)

# --- Basic Agent ---
class BasicAgent:
    def __init__(self):
        self.agent = CodeAgent(
            model=OpenAIServerModel(model_id="gpt-4o"),
            tools=[DuckDuckGoSearchTool(), WikipediaSearchTool()],
            add_base_tools=True,
            additional_authorized_imports=[]
        )
        print("BasicAgent initialized.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        fixed_answer = self.agent.run(question)
        print(f"Agent returning answer: {fixed_answer}")
        return fixed_answer

# --- Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = "YajieXu/Final_Assignment_Template"
    if profile:
        username = f"{profile.username}"
    else:
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")

        try:
            file_path = download_file_if_any(api_url, task_id)
        except Exception as e:
            file_path = None
            print(f"[file fetch error] {task_id}: {e}")

        q_for_agent = (
            f"{question_text}\n\n---\nA file was downloaded for this task and saved locally at:\n{file_path}\n---\n\n"
            if file_path else question_text
        )

        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(q_for_agent)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Log in to your Hugging Face account.
        2. Click the button to run the agent and submit answers.
        3. Your score will be printed below.
    """)
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("Launching GAIA agent app...")
    demo.launch(debug=True, share=False)