Spaces:
Sleeping
Sleeping
File size: 5,238 Bytes
10e9b7d eccf8e4 28371a0 c8461ca 28371a0 c8461ca 10e9b7d e80aab9 3db6293 e80aab9 28371a0 c8461ca 28371a0 c8461ca 28371a0 c8461ca 28371a0 c8461ca 31243f4 c8461ca 28371a0 c8461ca 28371a0 dc2edb0 c8461ca 28371a0 0b2a728 28371a0 dc2edb0 a64f38b 7e4a06b dc2edb0 7e4a06b 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 c8461ca 31243f4 dc2edb0 36ed51a 3c4371f eccf8e4 31243f4 7d65c66 31243f4 7d65c66 dc2edb0 e80aab9 7d65c66 31243f4 28371a0 c8461ca 28371a0 c8461ca 28371a0 c8461ca 31243f4 c8461ca 7d65c66 31243f4 dc2edb0 31243f4 7d65c66 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 dc2edb0 7d65c66 dc2edb0 e80aab9 28371a0 e80aab9 c8461ca dc2edb0 e514fd7 dc2edb0 7e4a06b 31243f4 9088b99 7d65c66 c8461ca e80aab9 dc2edb0 c8461ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import gradio as gr
import requests
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
from pathlib import Path
import tempfile
import pandas as pd
import re
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- File Download Helper ---
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
url = f"{base_api_url}/files/{task_id}"
try:
resp = requests.get(url, timeout=30)
if resp.status_code == 404:
return None
resp.raise_for_status()
except requests.exceptions.HTTPError as e:
raise e
cdisp = resp.headers.get("content-disposition", "")
filename = task_id
if "filename=" in cdisp:
m = re.search(r'filename="([^\"]+)"', cdisp)
if m:
filename = m.group(1)
tmp_dir = Path(tempfile.gettempdir()) / "gaia_files"
tmp_dir.mkdir(exist_ok=True)
file_path = tmp_dir / filename
with open(file_path, "wb") as f:
f.write(resp.content)
return str(file_path)
# --- Basic Agent ---
class BasicAgent:
def __init__(self):
self.agent = CodeAgent(
model=OpenAIServerModel(model_id="gpt-4o"),
tools=[DuckDuckGoSearchTool(), WikipediaSearchTool()],
add_base_tools=True,
additional_authorized_imports=[]
)
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = self.agent.run(question)
print(f"Agent returning answer: {fixed_answer}")
return fixed_answer
# --- Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = "YajieXu/Final_Assignment_Template"
if profile:
username = f"{profile.username}"
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
try:
file_path = download_file_if_any(api_url, task_id)
except Exception as e:
file_path = None
print(f"[file fetch error] {task_id}: {e}")
q_for_agent = (
f"{question_text}\n\n---\nA file was downloaded for this task and saved locally at:\n{file_path}\n---\n\n"
if file_path else question_text
)
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(q_for_agent)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Log in to your Hugging Face account.
2. Click the button to run the agent and submit answers.
3. Your score will be printed below.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("Launching GAIA agent app...")
demo.launch(debug=True, share=False)
|