Spaces:
Runtime error
Runtime error
File size: 5,400 Bytes
3edcab0 6671f1e 3edcab0 e4e7802 3edcab0 7b36c3a 3edcab0 f814fb7 7b36c3a f814fb7 7b36c3a 3edcab0 f814fb7 7b36c3a 3edcab0 7b36c3a db3b038 bd83ab5 db3b038 0b22b6f 3edcab0 72fb43a 7b36c3a 3edcab0 7b36c3a db3b038 7b36c3a db3b038 0b22b6f ffe4c63 0b22b6f 78b3ee4 f814fb7 3d4cc49 db3b038 45e21ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://xilixmeaty40-html-image-current-tabx.hf.space/")
with open("models.txt", "r") as file:
models = file.read().splitlines()
combined_model = "\n\n".join(models)
try:
client = InferenceClient(combined_model)
except Exception as e:
raise Exception(f"Failed to load models: {e}")
def load_models(inp):
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
prompt += cust_p.replace("USER_INPUT", message)
return prompt
def chat_inf(system_prompt, prompt, history, memory, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p):
hist_len = 0
if not history:
history = []
if not memory:
memory = []
if memory:
for ea in memory[0 - chat_mem:]:
hist_len += len(str(ea))
in_len = len(system_prompt + prompt) + hist_len
if (in_len + tokens) > 8000:
history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history, memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
if system_prompt:
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], cust_p)
else:
formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], cust_p)
try:
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True, timeout=10)
output = ""
for response in stream:
output += response.token.text
yield [(prompt, output)], memory
history.append((prompt, output))
memory.append((prompt, output))
yield history, memory
except Exception as e:
print(f"Error during model inference: {e}")
yield [("Error", "The model failed to respond, possibly due to a timeout. Please try again.")], memory
def get_screenshot(chat, height=5000, width=600, chatblock=[], theme="light", wait=3000, header=True):
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat), height, width, chatblock, header, theme, wait, api_name="/run_script")
out = f'https://xilixmeaty40-html-image-current-tabx.hf.space/file={result[tog]}'
return out
def clear_fn():
return None, None, None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
memory = gr.State()
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
custom_prompt = gr.Textbox(label="Modify Prompt Format", lines=3, value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
stop_btn = gr.Button("Stop")
clear_btn = gr.Button("Clear")
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens", value=300000, minimum=0, maximum=800000, step=64)
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p = gr.Slider(label="Repetition Penalty", step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem = gr.Number(label="Chat Memory", value=4)
with gr.Accordion(label="Screenshot", open=False):
im_btn = gr.Button("Screenshot")
img = gr.Image(type='filepath')
im_height = gr.Number(label="Height", value=5000)
im_width = gr.Number(label="Width", value=500)
wait_time = gr.Number(label="Wait Time", value=3000)
theme = gr.Radio(label="Theme", choices=["light", "dark"], value="light")
chatblock = gr.Dropdown(label="Chatblocks", choices=list(range(0, 21)), value=0, type="index")
header = gr.Checkbox(label="Include header?", value=True)
check_rand(rand_val, rand_val)
btn.click(chat_inf, inputs=[sys_inp, inp, chat_b, memory, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], outputs=[chat_b, memory])
stop_btn.click(lambda: None, [])
clear_btn.click(clear_fn, [])
app.launch(share=True)
|