File size: 5,400 Bytes
3edcab0
 
6671f1e
3edcab0
 
e4e7802
3edcab0
7b36c3a
 
3edcab0
f814fb7
7b36c3a
f814fb7
 
 
 
7b36c3a
 
 
3edcab0
 
 
 
 
 
 
 
 
 
f814fb7
7b36c3a
 
 
 
 
 
 
 
 
 
 
 
 
3edcab0
7b36c3a
 
 
 
 
 
 
 
 
 
 
 
db3b038
bd83ab5
db3b038
 
 
 
 
 
 
 
 
 
 
0b22b6f
 
 
 
 
 
 
 
3edcab0
 
 
 
 
 
72fb43a
7b36c3a
3edcab0
7b36c3a
 
 
 
 
 
 
 
 
 
db3b038
7b36c3a
 
 
 
db3b038
 
 
 
 
 
 
 
0b22b6f
 
 
 
 
 
 
ffe4c63
0b22b6f
78b3ee4
f814fb7
3d4cc49
 
db3b038
45e21ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random

ss_client = Client("https://xilixmeaty40-html-image-current-tabx.hf.space/")

with open("models.txt", "r") as file:
    models = file.read().splitlines()

combined_model = "\n\n".join(models)

try:
    client = InferenceClient(combined_model)
except Exception as e:
    raise Exception(f"Failed to load models: {e}")

def load_models(inp):
    return gr.update(label=models[inp])

def format_prompt(message, history, cust_p):
    prompt = ""
    if history:
        for user_prompt, bot_response in history:
            prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
            prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
    prompt += cust_p.replace("USER_INPUT", message)
    return prompt

def chat_inf(system_prompt, prompt, history, memory, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p):
    hist_len = 0
    if not history:
        history = []
    if not memory:
        memory = []
    if memory:
        for ea in memory[0 - chat_mem:]:
            hist_len += len(str(ea))
    in_len = len(system_prompt + prompt) + hist_len

    if (in_len + tokens) > 8000:
        history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
        yield history, memory
    else:
        generate_kwargs = dict(
            temperature=temp,
            max_new_tokens=tokens,
            top_p=top_p,
            repetition_penalty=rep_p,
            do_sample=True,
            seed=seed,
        )
        if system_prompt:
            formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], cust_p)
        else:
            formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], cust_p)
        try:
            stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True, timeout=10)
            output = ""
            for response in stream:
                output += response.token.text
                yield [(prompt, output)], memory
            history.append((prompt, output))
            memory.append((prompt, output))
            yield history, memory
        except Exception as e:
            print(f"Error during model inference: {e}")
            yield [("Error", "The model failed to respond, possibly due to a timeout. Please try again.")], memory

def get_screenshot(chat, height=5000, width=600, chatblock=[], theme="light", wait=3000, header=True):
    tog = 0
    if chatblock:
        tog = 3
    result = ss_client.predict(str(chat), height, width, chatblock, header, theme, wait, api_name="/run_script")
    out = f'https://xilixmeaty40-html-image-current-tabx.hf.space/file={result[tog]}'
    return out

def clear_fn():
    return None, None, None, None

rand_val = random.randint(1, 1111111111111111)

def check_rand(inp, val):
    if inp:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
    else:
        return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))

with gr.Blocks() as app:
    memory = gr.State()
    chat_b = gr.Chatbot(height=500)
    with gr.Group():
        with gr.Row():
            with gr.Column(scale=3):
                inp = gr.Textbox(label="Prompt")
                sys_inp = gr.Textbox(label="System Prompt (optional)")
                custom_prompt = gr.Textbox(label="Modify Prompt Format", lines=3, value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
                with gr.Row():
                    with gr.Column(scale=2):
                        btn = gr.Button("Chat")
                    with gr.Column(scale=1):
                        stop_btn = gr.Button("Stop")
                        clear_btn = gr.Button("Clear")
                seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
                tokens = gr.Slider(label="Max new tokens", value=300000, minimum=0, maximum=800000, step=64)
                temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
                top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
                rep_p = gr.Slider(label="Repetition Penalty", step=0.01, minimum=0.1, maximum=2.0, value=0.99)
                chat_mem = gr.Number(label="Chat Memory", value=4)
        with gr.Accordion(label="Screenshot", open=False):
            im_btn = gr.Button("Screenshot")
            img = gr.Image(type='filepath')
            im_height = gr.Number(label="Height", value=5000)
            im_width = gr.Number(label="Width", value=500)
            wait_time = gr.Number(label="Wait Time", value=3000)
            theme = gr.Radio(label="Theme", choices=["light", "dark"], value="light")
            chatblock = gr.Dropdown(label="Chatblocks", choices=list(range(0, 21)), value=0, type="index")
            header = gr.Checkbox(label="Include header?", value=True)
    check_rand(rand_val, rand_val)
    btn.click(chat_inf, inputs=[sys_inp, inp, chat_b, memory, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], outputs=[chat_b, memory])
    stop_btn.click(lambda: None, [])
    clear_btn.click(clear_fn, [])

app.launch(share=True)