Spaces:
Runtime error
Runtime error
Xilixmeaty40
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
from huggingface_hub import InferenceClient, HFRepository
|
4 |
+
|
5 |
+
import random
|
6 |
+
|
7 |
+
# Cargar modelos desde un archivo de texto
|
8 |
+
def load_models_from_file(filename):
|
9 |
+
with open(filename, 'r') as file:
|
10 |
+
models = [line.strip() for line in file.readlines() if line.strip()]
|
11 |
+
return models
|
12 |
+
|
13 |
+
# Cargar modelos desde un archivo de texto (models.txt)
|
14 |
+
models = load_models_from_file("models.txt")
|
15 |
+
|
16 |
+
# Crear clientes de inferencia para cada modelo
|
17 |
+
clients = []
|
18 |
+
for model in models:
|
19 |
+
try:
|
20 |
+
clients.append(InferenceClient(model))
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error loading model {model}: {str(e)}")
|
23 |
+
|
24 |
+
# Cargar conjuntos de datos desde un archivo de texto
|
25 |
+
def load_datasets_from_file(filename):
|
26 |
+
with open(filename, 'r') as file:
|
27 |
+
datasets = [line.strip() for line in file.readlines() if line.strip()]
|
28 |
+
return datasets
|
29 |
+
|
30 |
+
# Cargar conjuntos de datos desde un archivo de texto (datasets.txt)
|
31 |
+
datasets = load_datasets_from_file("datasets.txt")
|
32 |
+
|
33 |
+
# Crear clientes de repositorio para cada conjunto de datos
|
34 |
+
repository_clients = []
|
35 |
+
for dataset in datasets:
|
36 |
+
try:
|
37 |
+
repository_clients.append(HFRepository(dataset))
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error loading dataset {dataset}: {str(e)}")
|
40 |
+
|
41 |
+
VERBOSE = False
|
42 |
+
|
43 |
+
def format_prompt(message, history, cust_p):
|
44 |
+
prompt = ""
|
45 |
+
if history:
|
46 |
+
for user_prompt, bot_response in history:
|
47 |
+
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
48 |
+
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
|
49 |
+
if VERBOSE:
|
50 |
+
print(prompt)
|
51 |
+
prompt += cust_p.replace("USER_INPUT", message)
|
52 |
+
return prompt
|
53 |
+
|
54 |
+
def chat_inf(system_prompt, prompt, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p):
|
55 |
+
if not clients or not repository_clients:
|
56 |
+
yield [("Error", "No models or datasets available")], memory
|
57 |
+
else:
|
58 |
+
try:
|
59 |
+
client = clients[int(client_choice) - 1]
|
60 |
+
hist_len = 0
|
61 |
+
if not history:
|
62 |
+
history = []
|
63 |
+
if not memory:
|
64 |
+
memory = []
|
65 |
+
if memory:
|
66 |
+
for ea in memory[0 - chat_mem:]:
|
67 |
+
hist_len += len(str(ea))
|
68 |
+
in_len = len(system_prompt + prompt) + hist_len
|
69 |
+
|
70 |
+
if (in_len + tokens) > 500000:
|
71 |
+
history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
72 |
+
yield history, memory
|
73 |
+
else:
|
74 |
+
generate_kwargs = dict(
|
75 |
+
temperature=temp,
|
76 |
+
max_new_tokens=tokens,
|
77 |
+
top_p=top_p,
|
78 |
+
repetition_penalty=rep_p,
|
79 |
+
do_sample=True,
|
80 |
+
seed=seed,
|
81 |
+
)
|
82 |
+
if system_prompt:
|
83 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], cust_p)
|
84 |
+
else:
|
85 |
+
formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], cust_p)
|
86 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
87 |
+
output = ""
|
88 |
+
for response in stream:
|
89 |
+
output += response.token.text
|
90 |
+
yield [(prompt, output)], memory
|
91 |
+
history.append((prompt, output))
|
92 |
+
memory.append((prompt, output))
|
93 |
+
except Exception as e:
|
94 |
+
yield [(prompt, f"Error: {str(e)}")], memory
|
95 |
+
|
96 |
+
def get_screenshot(chat: list, height=5000, width=600, chatblock=[], theme="light", wait=3000, header=True):
|
97 |
+
tog = 0
|
98 |
+
if chatblock:
|
99 |
+
tog = 3
|
100 |
+
result = ss_client.predict(str(chat), height, width, chatblock, header, theme, wait, api_name="/run_script")
|
101 |
+
out = f'https://xilixmeaty40-testing.hf.space/file={result[tog]}'
|
102 |
+
return out
|
103 |
+
|
104 |
+
def clear_fn():
|
105 |
+
return None, None, None, None
|
106 |
+
|
107 |
+
rand_val = random.randint(1, 1111111111111111)
|
108 |
+
|
109 |
+
def check_rand(inp, val):
|
110 |
+
if inp:
|
111 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
112 |
+
else:
|
113 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
114 |
+
|
115 |
+
with gr.Blocks() as app:
|
116 |
+
memory = gr.State()
|
117 |
+
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
|
118 |
+
chat_b = gr.Chatbot(height=500)
|
119 |
+
with gr.Group():
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column(scale=3):
|
122 |
+
inp = gr.Textbox(label="Prompt")
|
123 |
+
sys_inp = gr.Textbox(label="System Prompt (optional)")
|
124 |
+
with gr.Accordion("Prompt Format", open=False):
|
125 |
+
custom_prompt = gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3, value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column(scale=2):
|
128 |
+
btn = gr.Button("Chat")
|
129 |
+
with gr.Column(scale=1):
|
130 |
+
with gr.Group():
|
131 |
+
stop_btn = gr.Button("Stop")
|
132 |
+
clear_btn = gr.Button("Clear")
|
133 |
+
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], interactive=True)
|
134 |
+
with gr.Column(scale=1):
|
135 |
+
with gr.Group():
|
136 |
+
rand = gr.Checkbox(label="Random Seed", value=True)
|
137 |
+
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
138 |
+
tokens = gr.Slider(label="Max new tokens", value=1600, minimum=0, maximum=500000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
|
139 |
+
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
140 |
+
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
141 |
+
rep_p = gr.Slider(label="Repetition Penalty", step=0.01, minimum=0.1, maximum=2.0, value=0.99)
|
142 |
+
chat_mem = gr.Number(label="Chat Memory", info="Number of previous chats to retain", value=4)
|
143 |
+
with gr.Accordion(label="Screenshot", open=False):
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column(scale=3):
|
146 |
+
im_btn = gr.Button("Screenshot")
|
147 |
+
img = gr.Image(type='filepath')
|
148 |
+
with gr.Column(scale=1):
|
149 |
+
with gr.Row():
|
150 |
+
im_height = gr.Number(label="Height", value=5000)
|
151 |
+
im_width = gr.Number(label="Width", value=500)
|
152 |
+
wait_time = gr.Number(label="Wait Time", value=3000)
|
153 |
+
theme = gr.Radio(label="Theme", choices=["light", "dark"], value="light")
|
154 |
+
chatblock = gr.Dropdown(label="Chatblocks", info="Choose specific blocks of chat", choices=[c for c in range(1, 40)], multiselect=True)
|
155 |
+
|
156 |
+
client_choice.change(load_models, client_choice, [chat_b])
|
157 |
+
app.load(load_models, client_choice, [chat_b])
|
158 |
+
|
159 |
+
im_go = im_btn.click(get_screenshot, [chat_b, im_height, im_width, chatblock, theme, wait_time], img)
|
160 |
+
|
161 |
+
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], [chat_b, memory])
|
162 |
+
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], [chat_b, memory])
|
163 |
+
|
164 |
+
stop_btn.click(None, None, None, cancels=[go, im_go, chat_sub])
|
165 |
+
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b, memory])
|
166 |
+
|
167 |
+
app.queue(default_concurrency_limit=10).launch()
|