File size: 19,566 Bytes
a5ea546
711211a
 
395d6df
711211a
 
1fb7158
711211a
 
 
 
 
e1c03cb
711211a
 
f80b905
 
401a164
 
 
e1c03cb
 
 
711211a
 
 
66ba241
 
e1c03cb
395d6df
 
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f0290e
711211a
 
 
 
 
 
 
 
 
 
 
 
66ba241
711211a
 
 
395d6df
 
 
 
 
 
 
 
 
 
 
 
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ef913
 
 
 
 
 
 
 
711211a
 
 
 
92ef913
 
711211a
 
 
 
 
 
 
92ef913
 
 
 
 
 
 
 
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395d6df
 
 
 
 
 
 
 
 
 
 
 
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a209c09
711211a
 
 
a209c09
711211a
92ef913
 
711211a
 
92ef913
 
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a209c09
 
 
 
 
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ba241
711211a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d323ecd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
import io

import torch
import json
import base64
import gradio as gr
import numpy as np
from pathlib import Path
from PIL import Image

from plots import get_pre_define_colors
from utils.load_model import load_xclip
from utils.predict import xclip_pred


#! Huggingface does not allow load model to main process, so we need to load the model when needed, it may not help in improve the speed of the app.
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Not at Huggingface demo, load model to main process.")
XCLIP, OWLVIT_PRECESSOR = load_xclip(DEVICE)

print(f"Device: {DEVICE}")

XCLIP_DESC_PATH = "data/jsons/bs_cub_desc.json"
XCLIP_DESC = json.load(open(XCLIP_DESC_PATH, "r"))
IMAGES_FOLDER = "data/images"
# XCLIP_RESULTS = json.load(open("data/jsons/xclip_org.json", "r"))
IMAGE2GT = json.load(open("data/jsons/image2gt.json", 'r'))
CUB_DESC_EMBEDS = torch.load('data/text_embeddings/cub_200_desc.pt')
CUB_IDX2NAME = json.load(open('data/jsons/cub_desc_idx2name.json', 'r'))
CUB_IDX2NAME = {int(k): v for k, v in CUB_IDX2NAME.items()}

IMAGE_FILE_LIST = json.load(open("data/jsons/file_list.json", "r"))
IMAGE_GALLERY = [Image.open(os.path.join(IMAGES_FOLDER, 'org', file_name)).convert('RGB') for file_name in IMAGE_FILE_LIST]

ORG_PART_ORDER = ['back', 'beak', 'belly', 'breast', 'crown', 'forehead', 'eyes', 'legs', 'wings', 'nape', 'tail', 'throat']
ORDERED_PARTS = ['crown', 'forehead', 'nape', 'eyes', 'beak', 'throat', 'breast', 'belly', 'back', 'wings', 'legs', 'tail']
COLORS = get_pre_define_colors(12, cmap_set=['Set2', 'tab10'])
SACHIT_COLOR = "#ADD8E6"
# CUB_BOXES = json.load(open("data/jsons/cub_boxes_owlvit_large.json", "r"))
VISIBILITY_DICT = json.load(open("data/jsons/cub_vis_dict_binary.json", 'r'))
VISIBILITY_DICT['Eastern_Bluebird.jpg'] = dict(zip(ORDERED_PARTS, [True]*12))

# --- Image related functions ---
def img_to_base64(img):
    img_pil = Image.fromarray(img) if isinstance(img, np.ndarray) else img
    buffered = io.BytesIO()
    img_pil.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue())
    return img_str.decode()

def create_blank_image(width=500, height=500, color=(255, 255, 255)):
    """Create a blank image of the given size and color."""
    return np.array(Image.new("RGB", (width, height), color))

# Convert RGB colors to hex
def rgb_to_hex(rgb):
    return f"#{''.join(f'{x:02x}' for x in rgb)}"

def load_part_images(file_name: str) -> dict:
    part_images = {}
    # start_time = time.time()
    for part_name in ORDERED_PARTS:
        base_name = Path(file_name).stem
        part_image_path = os.path.join(IMAGES_FOLDER, "boxes", f"{base_name}_{part_name}.jpg")
        if not Path(part_image_path).exists():
            continue
        image = np.array(Image.open(part_image_path))
        part_images[part_name] = img_to_base64(image)
    # print(f"Time cost to load 12 images: {time.time() - start_time}")
    # This takes less than 0.01 seconds. So the loading time is not the bottleneck.
    return part_images

def generate_xclip_explanations(result_dict:dict, visibility: dict, part_mask: dict = dict(zip(ORDERED_PARTS, [1]*12))):
    """
    The result_dict needs three keys: 'descriptions', 'pred_scores', 'file_name'
    descriptions: {part_name1: desc_1, part_name2: desc_2, ...}
    pred_scores: {part_name1: score_1, part_name2: score_2, ...}
    file_name: str
    """
    
    descriptions = result_dict['descriptions']
    image_name = result_dict['file_name']
    part_images = PART_IMAGES_DICT[image_name]
    MAX_LENGTH = 50
    exp_length = 400
    fontsize = 15

    # Start the SVG inside a div
    svg_parts = [f'<div style="width: {exp_length}px; height: 450px; background-color: white;">',
                 "<svg width=\"100%\" height=\"100%\">"]

    # Add a row for each visible bird part
    y_offset = 0
    for part in ORDERED_PARTS:
        if visibility[part] and part_mask[part]:
            # Calculate the length of the bar (scaled to fit within the SVG)
            part_score = max(result_dict['pred_scores'][part], 0)
            bar_length = part_score * exp_length

            # Modify the overlay image's opacity on mouseover and mouseout
            mouseover_action1 = f"document.getElementById('overlayImage').src = 'data:image/jpeg;base64,{part_images[part]}'; document.getElementById('overlayImage').style.opacity = 1;"
            mouseout_action1 = "document.getElementById('overlayImage').style.opacity = 0;"

            combined_mouseover = f"javascript: {mouseover_action1};"
            combined_mouseout = f"javascript: {mouseout_action1};"

            # Add the description
            num_lines = len(descriptions[part]) // MAX_LENGTH + 1
            for line in range(num_lines):
                desc_line = descriptions[part][line*MAX_LENGTH:(line+1)*MAX_LENGTH]
                y_offset += fontsize
                svg_parts.append(f"""
                <text x="0" y="{y_offset}" font-size="{fontsize}" 
                    onmouseover="{combined_mouseover}"
                    onmouseout="{combined_mouseout}">
                    {desc_line}
                </text>
                """)

            # Add the bars
            svg_parts.append(f"""
            <rect x="0" y="{y_offset +3}" width="{bar_length}" height="{fontsize*0.7}" fill="{PART_COLORS[part]}"
                onmouseover="{combined_mouseover}"
                onmouseout="{combined_mouseout}">
            </rect>
            """)
            # Add the scores
            svg_parts.append(f'<text x="{exp_length - 50}" y="{y_offset+fontsize+3}" font-size="{fontsize}" fill="{PART_COLORS[part]}">{part_score:.2f}</text>')

            y_offset += fontsize + 3
    svg_parts.extend(("</svg>", "</div>"))
    # Join everything into a single string
    html = "".join(svg_parts)


    return html



def generate_sachit_explanations(result_dict:dict):
    descriptions = result_dict['descriptions']
    scores = result_dict['scores']
    MAX_LENGTH = 50
    exp_length = 400
    fontsize = 15

    descriptions = zip(scores, descriptions)
    descriptions = sorted(descriptions, key=lambda x: x[0], reverse=True)

    # Start the SVG inside a div
    svg_parts = [f'<div style="width: {exp_length}px; height: 450px; background-color: white;">',
                 "<svg width=\"100%\" height=\"100%\">"]

    # Add a row for each visible bird part
    y_offset = 0
    for score, desc in descriptions:

        # Calculate the length of the bar (scaled to fit within the SVG)
        part_score = max(score, 0)
        bar_length = part_score * exp_length

        # Split the description into two lines if it's too long
        num_lines = len(desc) // MAX_LENGTH + 1
        for line in range(num_lines):
            desc_line = desc[line*MAX_LENGTH:(line+1)*MAX_LENGTH]
            y_offset += fontsize
            svg_parts.append(f"""
            <text x="0" y="{y_offset}" font-size="{fontsize}" fill="black">
                {desc_line}
            </text>
            """)

        # Add the bar
        svg_parts.append(f"""
        <rect x="0" y="{y_offset+3}" width="{bar_length}" height="{fontsize*0.7}" fill="{SACHIT_COLOR}">
        </rect>
        """)

        # Add the score
        svg_parts.append(f'<text x="{exp_length - 50}" y="{y_offset+fontsize+3}" font-size="fontsize" fill="{SACHIT_COLOR}">{part_score:.2f}</text>') # Added fill color

        y_offset += fontsize + 3


    svg_parts.extend(("</svg>", "</div>"))
    # Join everything into a single string
    html = "".join(svg_parts)


    return html

# --- Constants created by the functions above ---
BLANK_OVERLAY = img_to_base64(create_blank_image())
PART_COLORS = {part: rgb_to_hex(COLORS[i]) for i, part in enumerate(ORDERED_PARTS)}
blank_image = np.array(Image.open('data/images/final.png').convert('RGB'))
PART_IMAGES_DICT = {file_name: load_part_images(file_name) for file_name in IMAGE_FILE_LIST}

# --- Gradio Functions ---
def update_selected_image(event: gr.SelectData):
    image_height = 400
    index = event.index

    image_name = IMAGE_FILE_LIST[index]
    current_image.state = image_name
    org_image = Image.open(os.path.join(IMAGES_FOLDER, 'org', image_name)).convert('RGB')
    img_base64 = f"""
    <div style="position: relative; height: {image_height}px; display: inline-block;">
        <img id="birdImage" src="data:image/jpeg;base64,{img_to_base64(org_image)}" style="height: {image_height}px; width: auto;">
        <img id="overlayImage" src="data:image/jpeg;base64,{BLANK_OVERLAY}" style="position:absolute; top:0; left:0; width:auto; height: {image_height}px; opacity: 0;">
    </div>
    """
    gt_label = IMAGE2GT[image_name]
    gt_class.state = gt_label

    # --- for initial value only ---
    out_dict = xclip_pred(new_desc=None, 
                          new_part_mask=None, 
                          new_class=None, 
                          org_desc=XCLIP_DESC_PATH, 
                          image=Image.open(os.path.join(IMAGES_FOLDER, 'org', current_image.state)).convert('RGB'), 
                          model=XCLIP, 
                          owlvit_processor=OWLVIT_PRECESSOR, 
                          device=DEVICE, 
                          image_name=current_image.state,
                          cub_embeds=CUB_DESC_EMBEDS,
                          cub_idx2name=CUB_IDX2NAME,
                          descriptors=XCLIP_DESC)
    xclip_label = out_dict['pred_class']
    clip_pred_scores = out_dict['pred_score']
    xclip_part_scores = out_dict['pred_desc_scores']
    result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["descriptions"])), 'pred_scores': xclip_part_scores, 'file_name': current_image.state}
    xclip_exp = generate_xclip_explanations(result_dict, VISIBILITY_DICT[current_image.state], part_mask=dict(zip(ORDERED_PARTS, [1]*12)))
    # --- end of intial value ---
    
    xclip_color = "green" if xclip_label.strip() == gt_label.strip() else "red"
    xclip_pred_markdown = f"""
        ### <span style='color:{xclip_color}'>XCLIP: {xclip_label} &nbsp;&nbsp;&nbsp; {clip_pred_scores:.4f}</span>
    """

    gt_label = f"""
        ## {gt_label}
    """
    current_predicted_class.state = xclip_label
    
    # Populate the textbox with current descriptions
    custom_class_name = "class name: custom"
    descs = XCLIP_DESC[xclip_label]
    descs = {k: descs[i] for i, k in enumerate(ORG_PART_ORDER)}
    descs = {k: descs[k] for k in ORDERED_PARTS}
    custom_text = [custom_class_name] + list(descs.values())
    descriptions = ";\n".join(custom_text)
    # textbox = gr.Textbox.update(value=descriptions, lines=12, visible=True, label="XCLIP descriptions", interactive=True, info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', show_label=False)
    textbox = gr.Textbox(value=descriptions, 
                     lines=12, 
                     visible=True, 
                     label="XCLIP descriptions", 
                     interactive=True, 
                     info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', 
                     show_label=False)
    # modified_exp = gr.HTML().update(value="", visible=True)
    return gt_label, img_base64, xclip_pred_markdown, xclip_exp, current_image, textbox

def on_edit_button_click_xclip():
    # empty_exp = gr.HTML.update(visible=False)
    empty_exp = gr.HTML(visible=False)

    # Populate the textbox with current descriptions
    descs = XCLIP_DESC[current_predicted_class.state]
    descs = {k: descs[i] for i, k in enumerate(ORG_PART_ORDER)}
    descs = {k: descs[k] for k in ORDERED_PARTS}
    custom_text = ["class name: custom"] + list(descs.values())
    descriptions = ";\n".join(custom_text)
    # textbox = gr.Textbox.update(value=descriptions, lines=12, visible=True, label="XCLIP descriptions", interactive=True, info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}', show_label=False)
    textbox = gr.Textbox(value=descriptions,
                         lines=12,
                            visible=True,
                            label="XCLIP descriptions",
                            interactive=True,
                            info='Please use ";" to separate the descriptions for each part, and keep the format of {part name}: {descriptions}',
                            show_label=False)
    
    return textbox, empty_exp

def convert_input_text_to_xclip_format(textbox_input: str):

    # Split the descriptions by newline to get individual descriptions for each part
    descriptions_list = textbox_input.split(";\n")
    # the first line should be "class name: xxx"
    class_name_line = descriptions_list[0]
    new_class_name = class_name_line.split(":")[1].strip()
    
    descriptions_list = descriptions_list[1:]
    
    # construct descripion dict with part name as key
    descriptions_dict = {}
    for desc in descriptions_list:
        if desc.strip() == "":
            continue
        part_name, _ = desc.split(":")
        descriptions_dict[part_name.strip()] = desc
    # fill with empty string if the part is not in the descriptions
    part_mask = {}
    for part in ORDERED_PARTS:
        if part not in descriptions_dict:
            descriptions_dict[part] = ""
            part_mask[part] = 0
        else:
            part_mask[part] = 1
    return descriptions_dict, part_mask, new_class_name

def on_predict_button_click_xclip(textbox_input: str):
    descriptions_dict, part_mask, new_class_name = convert_input_text_to_xclip_format(textbox_input)
    
    # Get the new predictions and explanations
    out_dict = xclip_pred(new_desc=descriptions_dict, 
                          new_part_mask=part_mask, 
                          new_class=new_class_name, 
                          org_desc=XCLIP_DESC_PATH, 
                          image=Image.open(os.path.join(IMAGES_FOLDER, 'org', current_image.state)).convert('RGB'), 
                          model=XCLIP, 
                          owlvit_processor=OWLVIT_PRECESSOR, 
                          device=DEVICE, 
                          image_name=current_image.state,
                          cub_embeds=CUB_DESC_EMBEDS,
                          cub_idx2name=CUB_IDX2NAME,
                          descriptors=XCLIP_DESC)
    xclip_label = out_dict['pred_class']
    xclip_pred_score = out_dict['pred_score']
    xclip_part_scores = out_dict['pred_desc_scores']
    custom_label = out_dict['modified_class']
    custom_pred_score = out_dict['modified_score']
    custom_part_scores = out_dict['modified_desc_scores']

    # construct a result dict to generate xclip explanations
    result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["descriptions"])), 'pred_scores': xclip_part_scores, 'file_name': current_image.state}
    xclip_explanation = generate_xclip_explanations(result_dict, VISIBILITY_DICT[current_image.state], part_mask)
    modified_result_dict = {'descriptions': dict(zip(ORG_PART_ORDER, out_dict["modified_descriptions"])), 'pred_scores': custom_part_scores, 'file_name': current_image.state}
    modified_explanation = generate_xclip_explanations(modified_result_dict, VISIBILITY_DICT[current_image.state], part_mask)

    xclip_color = "green" if xclip_label.strip() == gt_class.state.strip() else "red"
    xclip_pred_markdown = f"""
        ### <span style='color:{xclip_color}'> {xclip_label} &nbsp;&nbsp;&nbsp; {xclip_pred_score:.4f}</span>
    """
    custom_color = "green" if custom_label.strip() == gt_class.state.strip() else "red"
    custom_pred_markdown = f"""
        ### <span style='color:{custom_color}'> {custom_label} &nbsp;&nbsp;&nbsp; {custom_pred_score:.4f}</span>
    """
    # textbox = gr.Textbox.update(visible=False)
    textbox = gr.Textbox(visible=False)
    # return textbox, xclip_pred_markdown, xclip_explanation, custom_pred_markdown, modified_explanation
    
    # modified_exp = gr.HTML().update(value=modified_explanation, visible=True)
    modified_exp = gr.HTML(value=modified_explanation, visible=True)
    return textbox, xclip_pred_markdown, xclip_explanation, custom_pred_markdown, modified_exp


custom_css = """
        html, body {
            margin: 0;
            padding: 0;
        }

        #container {
            position: relative;
            width: 400px;
            height: 400px;
            border: 1px solid #000;
            margin: 0 auto; /* This will center the container horizontally */
        }

        #canvas {
            position: absolute;
            top: 0;
            left: 0;
            width: 100%;
            height: 100%;
            object-fit: cover;
        }

"""

# Define the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="PEEB") as demo:
    current_image = gr.State("")
    current_predicted_class = gr.State("")
    gt_class = gr.State("")
    
    with gr.Column():
        title_text = gr.Markdown("# PEEB - demo")
        gr.Markdown(
            """
            - In this demo a demo for PEEB paper (NAACL finding 2024). 
            - paper: https://arxiv.org/abs/2403.05297
            - code: https://github.com/anguyen8/peeb/tree/inspect_ddp
            """
        )

    # display the gallery of images
    with gr.Column():
        
        gr.Markdown("## Select an image to start!")
        image_gallery = gr.Gallery(value=IMAGE_GALLERY, label=None, preview=False, allow_preview=False, columns=10, height=250)
        gr.Markdown("### Custom descritions: \n The first row should be **class name: {some name};**, where you can name your descriptions. \n For the remianing descriptions, please use **;** to separate the descriptions for each part, and use the format **{part name}: {descriptions}**. \n Note that you can delete a part completely, in such cases, all descriptions will remove the corresponding part.")
        
        with gr.Row():
            with gr.Column():
                image_label = gr.Markdown("### Class Name")
                org_image = gr.HTML()
            
            with gr.Column():
                with gr.Row():
                    # xclip_predict_button = gr.Button(label="Predict", value="Predict")
                    xclip_predict_button = gr.Button(value="Predict")
                xclip_pred_label = gr.Markdown("### PEEB:")
                xclip_explanation = gr.HTML()

            with gr.Column():
                # xclip_edit_button = gr.Button(label="Edit", value="Reset Descriptions")
                xclip_edit_button = gr.Button(value="Reset Descriptions")
                custom_pred_label = gr.Markdown(
                    "### Custom Descritpions:"
                )
                xclip_textbox = gr.Textbox(lines=12, placeholder="Edit the descriptions here", visible=False)
                # ai_explanation = gr.Image(type="numpy", visible=True, show_label=False, height=500)
                custom_explanation = gr.HTML()

    gr.HTML("<br>")

    image_gallery.select(update_selected_image, inputs=None, outputs=[image_label, org_image, xclip_pred_label, xclip_explanation, current_image, xclip_textbox])
    xclip_edit_button.click(on_edit_button_click_xclip, inputs=[], outputs=[xclip_textbox, custom_explanation])
    xclip_predict_button.click(on_predict_button_click_xclip, inputs=[xclip_textbox], outputs=[xclip_textbox, xclip_pred_label, xclip_explanation, custom_pred_label, custom_explanation])

demo.launch()