Spaces:
Running
on
Zero
Running
on
Zero
load the model to cpu first
Browse files- app.py +3 -8
- utils/predict.py +10 -4
app.py
CHANGED
@@ -15,14 +15,9 @@ from utils.predict import xclip_pred
|
|
15 |
|
16 |
|
17 |
#! Huggingface does not allow load model to main process, so we need to load the model when needed, it may not help in improve the speed of the app.
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
DEVICE = 'cuda'
|
22 |
-
except:
|
23 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
-
print(f"Not at Huggingface demo, load model to main process.")
|
25 |
-
XCLIP, OWLVIT_PRECESSOR = load_xclip(DEVICE)
|
26 |
|
27 |
print(f"Device: {DEVICE}")
|
28 |
|
|
|
15 |
|
16 |
|
17 |
#! Huggingface does not allow load model to main process, so we need to load the model when needed, it may not help in improve the speed of the app.
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
print(f"Not at Huggingface demo, load model to main process.")
|
20 |
+
XCLIP, OWLVIT_PRECESSOR = load_xclip(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
print(f"Device: {DEVICE}")
|
23 |
|
utils/predict.py
CHANGED
@@ -53,8 +53,12 @@ def xclip_pred(new_desc: dict,
|
|
53 |
cub_embeds: torch.Tensor = None,
|
54 |
cub_idx2name: dict = None,
|
55 |
descriptors: dict = None):
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# reorder the new description and the mask
|
60 |
if new_class is not None:
|
@@ -78,7 +82,9 @@ def xclip_pred(new_desc: dict,
|
|
78 |
n_classes = len(getprompt.name2idx)
|
79 |
descs, class_idxs, class_mapping, org_desc_mapper, class_list = getprompt('chatgpt-no-template', max_len=12, pad=True)
|
80 |
query_embeds = encode_descs_xclip(owlvit_processor, model, descs, device)
|
|
|
81 |
else:
|
|
|
82 |
if new_class is not None:
|
83 |
if new_class in list(cub_idx2name.values()):
|
84 |
new_class = f"{new_class}_custom"
|
@@ -87,11 +93,11 @@ def xclip_pred(new_desc: dict,
|
|
87 |
n_classes = 201
|
88 |
query_tokens = owlvit_processor(text=list(new_desc_.values()), padding="max_length", truncation=True, return_tensors="pt").to(device)
|
89 |
new_class_embed = model.owlvit.get_text_features(**query_tokens)
|
90 |
-
query_embeds = torch.cat([cub_embeds, new_class_embed], dim=0)
|
91 |
modified_class_idx = 200
|
92 |
else:
|
93 |
n_classes = 200
|
94 |
-
query_embeds = cub_embeds
|
95 |
idx2name = cub_idx2name
|
96 |
modified_class_idx = None
|
97 |
|
|
|
53 |
cub_embeds: torch.Tensor = None,
|
54 |
cub_idx2name: dict = None,
|
55 |
descriptors: dict = None):
|
56 |
+
# check if in huggingface space
|
57 |
+
try:
|
58 |
+
model.to('cuda')
|
59 |
+
device = 'cuda'
|
60 |
+
except:
|
61 |
+
device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu'
|
62 |
|
63 |
# reorder the new description and the mask
|
64 |
if new_class is not None:
|
|
|
82 |
n_classes = len(getprompt.name2idx)
|
83 |
descs, class_idxs, class_mapping, org_desc_mapper, class_list = getprompt('chatgpt-no-template', max_len=12, pad=True)
|
84 |
query_embeds = encode_descs_xclip(owlvit_processor, model, descs, device)
|
85 |
+
|
86 |
else:
|
87 |
+
cub_embeds = cub_embeds.to(device)
|
88 |
if new_class is not None:
|
89 |
if new_class in list(cub_idx2name.values()):
|
90 |
new_class = f"{new_class}_custom"
|
|
|
93 |
n_classes = 201
|
94 |
query_tokens = owlvit_processor(text=list(new_desc_.values()), padding="max_length", truncation=True, return_tensors="pt").to(device)
|
95 |
new_class_embed = model.owlvit.get_text_features(**query_tokens)
|
96 |
+
query_embeds = torch.cat([cub_embeds, new_class_embed], dim=0)
|
97 |
modified_class_idx = 200
|
98 |
else:
|
99 |
n_classes = 200
|
100 |
+
query_embeds = cub_embeds
|
101 |
idx2name = cub_idx2name
|
102 |
modified_class_idx = None
|
103 |
|