File size: 17,671 Bytes
3e16b6a
d1108ed
3e16b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc122fb
 
 
 
3e16b6a
 
 
7f19091
 
 
 
 
 
 
 
 
 
3e16b6a
 
 
 
 
 
cfaf5e3
3e16b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
import io
import pickle
import cv2
import gradio as gr
print(gr.__version__)
from tempSegAndAllErrorsForAllFrames import getAllErrorsAndSegmentation
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from scoring_functions import *
from generate_reports import *
from tempSegAndAllErrorsForAllFrames_newVids import getAllErrorsAndSegmentation_newVids, abstractSymbols

from jinja2 import Environment, FileSystemLoader
from PIL import Image, ImageDraw
from io import BytesIO
import base64

# platform_detector = get_platform_detector()
# splash_detector = get_splash_detector()
# diver_detector = get_diver_detector()
# pose_model = get_pose_model()
template_path = 'report_template_tables.html'
dive_data = {}

class CPU_Unpickler(pickle.Unpickler):
    def find_class(self, module, name):
        if module == 'torch.storage' and name == '_load_from_bytes':
            return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
        else: return super().find_class(module, name)

dive_data_precomputed = CPU_Unpickler(open('./segmentation_error_data.pkl', 'rb')).load()

# with open('./segmentation_error_data.pkl', 'rb') as f:
#     dive_data_precomputed = pickle.load(f)

import sys
import csv

csv.field_size_limit(sys.maxsize)

with open('FineDiving/fine-grained_annotation_aqa.pkl', 'rb') as f:
    dive_annotation_data = pickle.load(f)

def extract_frames(video_path):
    cap = cv2.VideoCapture(video_path)
    # Check if the video file is opened successfully
    if not cap.isOpened():
        print("Error: Couldn't open video file.")
        exit()
    # a variable to set how many frames you want to skip
    frame_skip = 1
    # a variable to keep track of the frame to be saved
    frame_count = 0
    frames = []
    i = 0
    while True:
        ret, frame = cap.read()
        if not ret: 
            break
        if i > frame_skip - 1:
            frame_count += 1
            # print("frame.shape:", frame.shape)
            # resize takes argument (width, height)
            frame = cv2.resize(frame, (455, 256))
            frames.append(frame)
            i = 0
            continue
        # cv2.imwrite("./tempdata/{}.jpg".format(i), frame)
        i += 1
    cap.release()
    print("frame_count", frame_count)
    return frames

def get_key_from_videopath(video):
    try:
        video_name = video.split('/')[-1]
        first_folder = video_name.split('_')[1]
        second_folder = video_name.split('_')[2].split('.')[0]
        return (first_folder, int(second_folder))
    except:
        return None

def get_abstracted_symbols_precomputed(video, key, progress=gr.Progress()):
    progress(0, desc="Abstracting Symbols")
    if video is None:
        raise gr.Error("input a video!!")
    local_directory = "FineDiving/datasets/FINADiving_MTL_256s/{}/{}/".format(key[0], key[1]) 
    directory = "file:///Users/lokamoto/Comprehensive_AQA/FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])
    # dive_data = abstractSymbols(frames, progress=progress, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
    # dive_data['frames'] = frames
    global dive_data_precomputed
    dive_data = dive_data_precomputed[key]
    html_intermediate = generate_symbols_report_precomputed("intermediate_steps.html", dive_data, local_directory, progress=progress)
    progress(0.95, desc="Abstracting Symbols")
    return html_intermediate

def get_abstracted_symbols_calculated(video, progress=gr.Progress()):
    progress(0, desc="Abstracting Symbols")
    frames = extract_frames(video)
    global dive_data
    dive_data = abstractSymbols(frames, progress=progress, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
    dive_data['frames'] = frames
    html_intermediate = generate_symbols_report("intermediate_steps.html", dive_data, frames)
    return html_intermediate

def get_abstracted_symbols(video, progress=gr.Progress()):
    if video is None:
        raise gr.Error("input a video!!")
    key = get_key_from_videopath(video)
    if key is None:
        return get_abstracted_symbols_calculated(video, progress=progress)
    else:
        return get_abstracted_symbols_precomputed(video, key, progress=progress)

def get_score_report_precomputed(video, key, progress=gr.Progress(), diveNum=""):
    progress(0, desc="Calculating Dive Errors")
    if video is None:
        raise gr.Error("input a video!!")
    global dive_data_precomputed
    dive_data = dive_data_precomputed[key]
    local_directory = "FineDiving/datasets/FINADiving_MTL_256s/{}/{}/".format(key[0], key[1]) 
    directory = "file:///Users/lokamoto/Comprehensive_AQA/FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])

    intermediate_scores_dict = get_all_report_scores(dive_data)
    progress(0.75, desc="Generating Score Report")
    print('getting html...')
    html = generate_report(template_path, intermediate_scores_dict, directory, local_directory, progress=progress)
    progress(0.9, desc="Generating Score Report")
    html = (
        "<div style='max-width:100%; max-height:360px; overflow:auto'>"
        + html
        + "</div>")
    print("returning...")
    return html

def get_score_report_calculated(video, progress=gr.Progress(), diveNum=""):
    progress(0, desc="Calculating Dive Errors")
    global dive_data
    frames = extract_frames(video)
    dive_data = getAllErrorsAndSegmentation_newVids(frames, dive_data, progress=progress, diveNum=diveNum, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
    intermediate_scores_dict = get_all_report_scores(dive_data)
    progress(0.75, desc="Generating Score Report")
    print('getting html...')
    html = generate_report_from_frames(template_path, intermediate_scores_dict, frames)
    html = (
        "<div style='max-width:100%; max-height:360px; overflow:auto'>"
        + html
        + "</div>")
    print("returning...")
    progress(8/8, desc="Generating Score Report")
    return html

def get_score_report(video, progress=gr.Progress(), diveNum=""):
    if video is None:
        raise gr.Error("input a video!!")
    key = get_key_from_videopath(video)
    if key is None:
        return get_score_report_calculated(video, progress=progress)
    else:
        return get_score_report_precomputed(video, key, progress=progress)


def get_html_from_video(video, diveNum=""):
    if video is None:
        raise gr.Error("input a video!!")
    frames = extract_frames(video)
    dive_data = abstractSymbols(frames, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
    dive_data['frames'] = frames.copy()
    html_intermediate = generate_symbols_report("intermediate_steps.html", dive_data, frames)
    yield html_intermediate
    dive_data = getAllErrorsAndSegmentation_newVids(frames, dive_data, diveNum=diveNum, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
    intermediate_scores_dict = get_all_report_scores(dive_data)
    print('getting html...')
    html = generate_report_from_frames(template_path, intermediate_scores_dict, frames)
    html = (
        "<div style='max-width:100%; max-height:360px; overflow:auto'>"
        + html_intermediate
        + html
        + "</div>")
    print("returning...")
    yield html

def get_html_from_finedivingkey(first_folder, second_folder):
    board_side = "left" # change!!!
    key = (first_folder, int(second_folder))
    local_directory = "FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1]) 
    directory = "file:///Users/lokamoto/Comprehensive_AQA/FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])
    print("key:", key)
    diveNum = dive_annotation_data[key][0]
    pose_preds, takeoff, twist, som, entry, distance_from_board, position_tightness, feet_apart, over_under_rotation, splash, above_boards, on_boards, som_counts, twist_counts, board_end_coords, diver_boxes = getAllErrorsAndSegmentation(first_folder, second_folder, diveNum, board_side=board_side, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
    dive_data['pose_pred'] = pose_preds
    dive_data['takeoff'] = takeoff
    dive_data['twist'] = twist
    dive_data['som'] = som
    dive_data['entry'] = entry
    dive_data['distance_from_board'] = distance_from_board
    dive_data['position_tightness'] = position_tightness
    dive_data['feet_apart'] = feet_apart
    dive_data['over_under_rotation'] = over_under_rotation
    dive_data['splash'] = splash
    dive_data['above_boards'] = above_boards
    dive_data['on_boards'] = on_boards
    dive_data['som_counts'] = som_counts
    dive_data['twist_counts'] = twist_counts
    dive_data['board_end_coords'] = board_end_coords
    dive_data['diver_boxes'] = diver_boxes
    dive_data['diveNum'] = diveNum
    dive_data['board_side'] = board_side

    intermediate_scores_dict = get_all_report_scores(dive_data)
    html = generate_report(template_path, intermediate_scores_dict, directory, local_directory)
    html = (
        "<div style='max-width:100%; max-height:360px; overflow:auto'>"
        + html
        + "</div>")

    return html

## gradio where we input a video ###
def enable_get_score_btn(get_score_btn):
    return gr.Button.update(interactive=True, variant="primary")

def disable_get_score_btn(get_score_btn):
    return gr.Button.update(interactive=False, variant="secondary")

with gr.Blocks() as demo_new:
    gr.Markdown(
    """
    # NS-AQA
    This system takes in a diving video, and outputs a detailed report summarizing each component of the dive and how we evaluated it. We first abstract the necessary symbols, and then proceed to score the dive.\n
    Paper: *insert link to paper* \n
    Code: *insert github link*
    """)
    
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
                ## Step 1: Abstract Symbols
                We first abstract the necessary visual elements from the provided diving video. This includes the platform, splash, and the pose estimation of the diver.
                """
            )
            video = gr.Video(label="Video", format="mp4", include_audio=False)
            abstract_symbols_btn = gr.Button("Abstract Symbols", variant='primary')
        symbol_output = gr.HTML(label="Output")
    examples = gr.Examples(examples = [['01_10.mp4'], ['01_11.mp4'], ['01_16.mp4'], ['01_33.mp4'], ['01_140.mp4']], inputs=[video])

    with gr.Row():
        gr.Markdown(
            """
            ## Step 2: Calculate Logic-Based Errors and Generate Detailed Score Report
            """
        )
        get_score_btn = gr.Button("Get Score", interactive=False, variant='secondary')
    score_report = gr.HTML(label="Output")
    # get_score_report_btn = gr.Button("Get Score Report")
    # video.change(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    video.change(fn=disable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    video.change(fn=enable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
    abstract_symbols_btn.click(fn=get_abstracted_symbols, inputs=video, outputs=symbol_output).success(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    symbol_output.change(fn=disable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
    symbol_output.change(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    get_score_btn.click(fn=get_score_report, inputs=[video], outputs=score_report)


#### demo precomputed ########
with gr.Blocks() as demo_precomputed:
    gr.Markdown(
        """
        # Neuro-Symbolic Olympic Diving Judge
        This system not only scores an Olympic dive, and outputs a detailed report summarizing each component of the dive and how we evaluated it. We first abstract the necessary symbols, and then proceed to score the dive.\n
        Paper: *insert link to paper* \n
        Code: *insert github link*
        """)

    gr.Markdown(
        """
        ## Step 1: Abstract Symbols
        We first abstract the necessary visual elements from the provided diving video. This includes the platform, splash, and the pose estimation of the diver.
        """
    )
    # with gr.Row():
    gr.HTML(
        """
        <table>
            <tr>
                <td>
                    Platform
                    <img src='file/platform.png' height='90'>
                </td>
                <td>
                    The location of the platform, especially the position of its edge facing the pool, is crucial to determine when the diver leaves the platform, thus starting their dive.  
                    The platform location is also important to assess how close the diver comes to its edge, which is relevant to scoring.
                </td>
                <td>
                    Pose Estimation of Diver
                    <img src='file/pose_estimation.png' height='70'>
                </td>
                <td>
                    The pose of the diver in the sequence of video frames is critical to understanding and assessing the dive.  
                    We obtain 2D pose data with locations of various body parts, including the head, thorax, pelvis, shoulders, elbows, wrists, hips, knees, and ankles. 
                    With this, we can recognize sub-actions being performed by the diver, such as a somersault, a twist, or an entry, and also assess the quality of that sub-action.
                </td>
                <td>
                    Splash
                    <img src='file/splash.png' height='90'>
                </td>
                <td>
                    Splash at entry into the pool is a conspicuous visual feature of a dive. 
                    The size of the splash is an important element in traditional scoring of dives. 
                    A large splash mars the end of a dive and also likely indicates a flaw in form at water entry. 
                </td>
            </tr>
        </table>
        """
    )
    gr.Markdown(
        """
        1. Select one of the example diving videos. 
        2. Hit the **Abstract Symbols** button.
        """
    )

    with gr.Row(variant='panel'):
        with gr.Column():
            video = gr.Video(label="Video", format="mp4", include_audio=False)
            abstract_symbols_btn = gr.Button("Abstract Symbols", variant='primary')
        symbol_output = gr.HTML(label="Output")
    examples = gr.Examples(examples = [['01_10.mp4'], ['01_11.mp4'], ['01_16.mp4'], ['01_33.mp4'], ['01_76.mp4'], ['01_140.mp4']], inputs=[video])

    gr.Markdown(
        """
        ## Step 2: Calculate Logic-Based Errors and Generate Detailed Score Report

        Using the abstracted symbols, we calculate different "errors" of the dive. 
        These errors are: **feet apart; height off board; distance from board; somersault position tightness; knee straightness; twist position straightness; over/under rotation; straightness of body during entry; and splash size.** 
        Each error is scored on a scale of 0-10, and are then averaged to reach a final score for the dive.
        
        We then programmatically generate a detailed performance report containing different aspects of the dive, their percentile scores, and visual evidence. 
        This report can be seen as a compact, but highly detailed representation of quality of the dive performed. 
        It can be helpful for a number of reasons including as a support to human judges and as an educational tool to teach coaches, athletes, and judges how to score. 

        1. Click the **Get Score** button. The Score Report will be generated below. (Abstract Symbols first if you haven't already!)
        """
    )

    # with gr.Row():
    get_score_btn = gr.Button("Get Score", interactive=False)
    score_report = gr.HTML(label="Report")
    # get_score_report_btn = gr.Button("Get Score Report")
    video.change(fn=disable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    video.change(fn=enable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
    abstract_symbols_btn.click(fn=get_abstracted_symbols, inputs=video, outputs=symbol_output).success(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    symbol_output.change(fn=disable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
    symbol_output.change(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
    get_score_btn.click(fn=get_score_report, inputs=video, outputs=score_report)


############################################################################################################################################


demo_precomputed.queue()
demo_precomputed.launch(share=True)
######### gradio where we input first and second folder ##
# demo = gr.Interface(
#     fn=get_html_from_finedivingkey,
#     inputs=["text", "text"],
#     outputs=["html"],
# )

# demo.launch(share=True, enable_queue=True,)