laurenok24
commited on
Commit
•
3e16b6a
1
Parent(s):
2af1b18
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
print(gr.__version__)
|
6 |
+
from tempSegAndAllErrorsForAllFrames import getAllErrorsAndSegmentation
|
7 |
+
from models.detectron2.platform_detector_setup import get_platform_detector
|
8 |
+
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
|
9 |
+
from models.detectron2.diver_detector_setup import get_diver_detector
|
10 |
+
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
|
11 |
+
from models.detectron2.splash_detector_setup import get_splash_detector
|
12 |
+
from scoring_functions import *
|
13 |
+
from generate_reports import *
|
14 |
+
from tempSegAndAllErrorsForAllFrames_newVids import getAllErrorsAndSegmentation_newVids, abstractSymbols
|
15 |
+
|
16 |
+
from jinja2 import Environment, FileSystemLoader
|
17 |
+
from PIL import Image, ImageDraw
|
18 |
+
from io import BytesIO
|
19 |
+
import base64
|
20 |
+
|
21 |
+
platform_detector = get_platform_detector()
|
22 |
+
splash_detector = get_splash_detector()
|
23 |
+
diver_detector = get_diver_detector()
|
24 |
+
pose_model = get_pose_model()
|
25 |
+
template_path = 'report_template_tables.html'
|
26 |
+
dive_data = {}
|
27 |
+
|
28 |
+
with open('./segmentation_error_data.pkl', 'rb') as f:
|
29 |
+
dive_data_precomputed = pickle.load(f)
|
30 |
+
|
31 |
+
import sys
|
32 |
+
import csv
|
33 |
+
|
34 |
+
csv.field_size_limit(sys.maxsize)
|
35 |
+
|
36 |
+
with open('FineDiving/Annotations/fine-grained_annotation_aqa.pkl', 'rb') as f:
|
37 |
+
dive_annotation_data = pickle.load(f)
|
38 |
+
|
39 |
+
def extract_frames(video_path):
|
40 |
+
cap = cv2.VideoCapture(video_path)
|
41 |
+
# Check if the video file is opened successfully
|
42 |
+
if not cap.isOpened():
|
43 |
+
print("Error: Couldn't open video file.")
|
44 |
+
exit()
|
45 |
+
# a variable to set how many frames you want to skip
|
46 |
+
frame_skip = 1
|
47 |
+
# a variable to keep track of the frame to be saved
|
48 |
+
frame_count = 0
|
49 |
+
frames = []
|
50 |
+
i = 0
|
51 |
+
while True:
|
52 |
+
ret, frame = cap.read()
|
53 |
+
if not ret:
|
54 |
+
break
|
55 |
+
if i > frame_skip - 1:
|
56 |
+
frame_count += 1
|
57 |
+
# print("frame.shape:", frame.shape)
|
58 |
+
# resize takes argument (width, height)
|
59 |
+
frame = cv2.resize(frame, (455, 256))
|
60 |
+
frames.append(frame)
|
61 |
+
i = 0
|
62 |
+
continue
|
63 |
+
# cv2.imwrite("./tempdata/{}.jpg".format(i), frame)
|
64 |
+
i += 1
|
65 |
+
cap.release()
|
66 |
+
print("frame_count", frame_count)
|
67 |
+
return frames
|
68 |
+
|
69 |
+
def get_key_from_videopath(video):
|
70 |
+
try:
|
71 |
+
video_name = video.split('/')[-1]
|
72 |
+
first_folder = video_name.split('_')[1]
|
73 |
+
second_folder = video_name.split('_')[2].split('.')[0]
|
74 |
+
return (first_folder, int(second_folder))
|
75 |
+
except:
|
76 |
+
return None
|
77 |
+
|
78 |
+
def get_abstracted_symbols_precomputed(video, key, progress=gr.Progress()):
|
79 |
+
progress(0, desc="Abstracting Symbols")
|
80 |
+
if video is None:
|
81 |
+
raise gr.Error("input a video!!")
|
82 |
+
local_directory = "FineDiving/datasets/FINADiving_MTL_256s/{}/{}/".format(key[0], key[1])
|
83 |
+
directory = "file:///Users/lokamoto/Comprehensive_AQA/FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])
|
84 |
+
# dive_data = abstractSymbols(frames, progress=progress, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
|
85 |
+
# dive_data['frames'] = frames
|
86 |
+
global dive_data_precomputed
|
87 |
+
dive_data = dive_data_precomputed[key]
|
88 |
+
html_intermediate = generate_symbols_report_precomputed("intermediate_steps.html", dive_data, local_directory, progress=progress)
|
89 |
+
progress(0.95, desc="Abstracting Symbols")
|
90 |
+
return html_intermediate
|
91 |
+
|
92 |
+
def get_abstracted_symbols_calculated(video, progress=gr.Progress()):
|
93 |
+
progress(0, desc="Abstracting Symbols")
|
94 |
+
frames = extract_frames(video)
|
95 |
+
global dive_data
|
96 |
+
dive_data = abstractSymbols(frames, progress=progress, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
|
97 |
+
dive_data['frames'] = frames
|
98 |
+
html_intermediate = generate_symbols_report("intermediate_steps.html", dive_data, frames)
|
99 |
+
return html_intermediate
|
100 |
+
|
101 |
+
def get_abstracted_symbols(video, progress=gr.Progress()):
|
102 |
+
if video is None:
|
103 |
+
raise gr.Error("input a video!!")
|
104 |
+
key = get_key_from_videopath(video)
|
105 |
+
if key is None:
|
106 |
+
return get_abstracted_symbols_calculated(video, progress=progress)
|
107 |
+
else:
|
108 |
+
return get_abstracted_symbols_precomputed(video, key, progress=progress)
|
109 |
+
|
110 |
+
def get_score_report_precomputed(video, key, progress=gr.Progress(), diveNum=""):
|
111 |
+
progress(0, desc="Calculating Dive Errors")
|
112 |
+
if video is None:
|
113 |
+
raise gr.Error("input a video!!")
|
114 |
+
global dive_data_precomputed
|
115 |
+
dive_data = dive_data_precomputed[key]
|
116 |
+
local_directory = "FineDiving/datasets/FINADiving_MTL_256s/{}/{}/".format(key[0], key[1])
|
117 |
+
directory = "file:///Users/lokamoto/Comprehensive_AQA/FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])
|
118 |
+
|
119 |
+
intermediate_scores_dict = get_all_report_scores(dive_data)
|
120 |
+
progress(0.75, desc="Generating Score Report")
|
121 |
+
print('getting html...')
|
122 |
+
html = generate_report(template_path, intermediate_scores_dict, directory, local_directory, progress=progress)
|
123 |
+
progress(0.9, desc="Generating Score Report")
|
124 |
+
html = (
|
125 |
+
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
|
126 |
+
+ html
|
127 |
+
+ "</div>")
|
128 |
+
print("returning...")
|
129 |
+
return html
|
130 |
+
|
131 |
+
def get_score_report_calculated(video, progress=gr.Progress(), diveNum=""):
|
132 |
+
progress(0, desc="Calculating Dive Errors")
|
133 |
+
global dive_data
|
134 |
+
frames = extract_frames(video)
|
135 |
+
dive_data = getAllErrorsAndSegmentation_newVids(frames, dive_data, progress=progress, diveNum=diveNum, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
|
136 |
+
intermediate_scores_dict = get_all_report_scores(dive_data)
|
137 |
+
progress(0.75, desc="Generating Score Report")
|
138 |
+
print('getting html...')
|
139 |
+
html = generate_report_from_frames(template_path, intermediate_scores_dict, frames)
|
140 |
+
html = (
|
141 |
+
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
|
142 |
+
+ html
|
143 |
+
+ "</div>")
|
144 |
+
print("returning...")
|
145 |
+
progress(8/8, desc="Generating Score Report")
|
146 |
+
return html
|
147 |
+
|
148 |
+
def get_score_report(video, progress=gr.Progress(), diveNum=""):
|
149 |
+
if video is None:
|
150 |
+
raise gr.Error("input a video!!")
|
151 |
+
key = get_key_from_videopath(video)
|
152 |
+
if key is None:
|
153 |
+
return get_score_report_calculated(video, progress=progress)
|
154 |
+
else:
|
155 |
+
return get_score_report_precomputed(video, key, progress=progress)
|
156 |
+
|
157 |
+
|
158 |
+
def get_html_from_video(video, diveNum=""):
|
159 |
+
if video is None:
|
160 |
+
raise gr.Error("input a video!!")
|
161 |
+
frames = extract_frames(video)
|
162 |
+
dive_data = abstractSymbols(frames, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
|
163 |
+
dive_data['frames'] = frames.copy()
|
164 |
+
html_intermediate = generate_symbols_report("intermediate_steps.html", dive_data, frames)
|
165 |
+
yield html_intermediate
|
166 |
+
dive_data = getAllErrorsAndSegmentation_newVids(frames, dive_data, diveNum=diveNum, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
|
167 |
+
intermediate_scores_dict = get_all_report_scores(dive_data)
|
168 |
+
print('getting html...')
|
169 |
+
html = generate_report_from_frames(template_path, intermediate_scores_dict, frames)
|
170 |
+
html = (
|
171 |
+
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
|
172 |
+
+ html_intermediate
|
173 |
+
+ html
|
174 |
+
+ "</div>")
|
175 |
+
print("returning...")
|
176 |
+
yield html
|
177 |
+
|
178 |
+
def get_html_from_finedivingkey(first_folder, second_folder):
|
179 |
+
board_side = "left" # change!!!
|
180 |
+
key = (first_folder, int(second_folder))
|
181 |
+
local_directory = "FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])
|
182 |
+
directory = "file:///Users/lokamoto/Comprehensive_AQA/FineDiving/datasets/FINADiving_MTL_256s/{}/{}".format(key[0], key[1])
|
183 |
+
print("key:", key)
|
184 |
+
diveNum = dive_annotation_data[key][0]
|
185 |
+
pose_preds, takeoff, twist, som, entry, distance_from_board, position_tightness, feet_apart, over_under_rotation, splash, above_boards, on_boards, som_counts, twist_counts, board_end_coords, diver_boxes = getAllErrorsAndSegmentation(first_folder, second_folder, diveNum, board_side=board_side, platform_detector=platform_detector, splash_detector=splash_detector, diver_detector=diver_detector, pose_model=pose_model)
|
186 |
+
dive_data['pose_pred'] = pose_preds
|
187 |
+
dive_data['takeoff'] = takeoff
|
188 |
+
dive_data['twist'] = twist
|
189 |
+
dive_data['som'] = som
|
190 |
+
dive_data['entry'] = entry
|
191 |
+
dive_data['distance_from_board'] = distance_from_board
|
192 |
+
dive_data['position_tightness'] = position_tightness
|
193 |
+
dive_data['feet_apart'] = feet_apart
|
194 |
+
dive_data['over_under_rotation'] = over_under_rotation
|
195 |
+
dive_data['splash'] = splash
|
196 |
+
dive_data['above_boards'] = above_boards
|
197 |
+
dive_data['on_boards'] = on_boards
|
198 |
+
dive_data['som_counts'] = som_counts
|
199 |
+
dive_data['twist_counts'] = twist_counts
|
200 |
+
dive_data['board_end_coords'] = board_end_coords
|
201 |
+
dive_data['diver_boxes'] = diver_boxes
|
202 |
+
dive_data['diveNum'] = diveNum
|
203 |
+
dive_data['board_side'] = board_side
|
204 |
+
|
205 |
+
intermediate_scores_dict = get_all_report_scores(dive_data)
|
206 |
+
html = generate_report(template_path, intermediate_scores_dict, directory, local_directory)
|
207 |
+
html = (
|
208 |
+
"<div style='max-width:100%; max-height:360px; overflow:auto'>"
|
209 |
+
+ html
|
210 |
+
+ "</div>")
|
211 |
+
|
212 |
+
return html
|
213 |
+
|
214 |
+
## gradio where we input a video ###
|
215 |
+
def enable_get_score_btn(get_score_btn):
|
216 |
+
return gr.Button.update(interactive=True, variant="primary")
|
217 |
+
|
218 |
+
def disable_get_score_btn(get_score_btn):
|
219 |
+
return gr.Button.update(interactive=False, variant="secondary")
|
220 |
+
|
221 |
+
with gr.Blocks() as demo_new:
|
222 |
+
gr.Markdown(
|
223 |
+
"""
|
224 |
+
# NS-AQA
|
225 |
+
This system takes in a diving video, and outputs a detailed report summarizing each component of the dive and how we evaluated it. We first abstract the necessary symbols, and then proceed to score the dive.\n
|
226 |
+
Paper: *insert link to paper* \n
|
227 |
+
Code: *insert github link*
|
228 |
+
""")
|
229 |
+
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
gr.Markdown(
|
233 |
+
"""
|
234 |
+
## Step 1: Abstract Symbols
|
235 |
+
We first abstract the necessary visual elements from the provided diving video. This includes the platform, splash, and the pose estimation of the diver.
|
236 |
+
"""
|
237 |
+
)
|
238 |
+
video = gr.Video(label="Video", format="mp4", include_audio=False)
|
239 |
+
abstract_symbols_btn = gr.Button("Abstract Symbols", variant='primary')
|
240 |
+
symbol_output = gr.HTML(label="Output")
|
241 |
+
examples = gr.Examples(examples = [['01_10.mp4'], ['01_11.mp4'], ['01_16.mp4'], ['01_33.mp4'], ['01_140.mp4']], inputs=[video])
|
242 |
+
|
243 |
+
with gr.Row():
|
244 |
+
gr.Markdown(
|
245 |
+
"""
|
246 |
+
## Step 2: Calculate Logic-Based Errors and Generate Detailed Score Report
|
247 |
+
"""
|
248 |
+
)
|
249 |
+
get_score_btn = gr.Button("Get Score", interactive=False, variant='secondary')
|
250 |
+
score_report = gr.HTML(label="Output")
|
251 |
+
# get_score_report_btn = gr.Button("Get Score Report")
|
252 |
+
# video.change(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
253 |
+
video.change(fn=disable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
254 |
+
video.change(fn=enable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
|
255 |
+
abstract_symbols_btn.click(fn=get_abstracted_symbols, inputs=video, outputs=symbol_output).success(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
256 |
+
symbol_output.change(fn=disable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
|
257 |
+
symbol_output.change(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
258 |
+
get_score_btn.click(fn=get_score_report, inputs=[video], outputs=score_report)
|
259 |
+
|
260 |
+
|
261 |
+
#### demo precomputed ########
|
262 |
+
with gr.Blocks() as demo_precomputed:
|
263 |
+
gr.Markdown(
|
264 |
+
"""
|
265 |
+
# Neuro-Symbolic Olympic Diving Judge
|
266 |
+
This system not only scores an Olympic dive, and outputs a detailed report summarizing each component of the dive and how we evaluated it. We first abstract the necessary symbols, and then proceed to score the dive.\n
|
267 |
+
Paper: *insert link to paper* \n
|
268 |
+
Code: *insert github link*
|
269 |
+
""")
|
270 |
+
|
271 |
+
gr.Markdown(
|
272 |
+
"""
|
273 |
+
## Step 1: Abstract Symbols
|
274 |
+
We first abstract the necessary visual elements from the provided diving video. This includes the platform, splash, and the pose estimation of the diver.
|
275 |
+
"""
|
276 |
+
)
|
277 |
+
# with gr.Row():
|
278 |
+
gr.HTML(
|
279 |
+
"""
|
280 |
+
<table>
|
281 |
+
<tr>
|
282 |
+
<td>
|
283 |
+
Platform
|
284 |
+
<img src='file/platform.png' height='90'>
|
285 |
+
</td>
|
286 |
+
<td>
|
287 |
+
The location of the platform, especially the position of its edge facing the pool, is crucial to determine when the diver leaves the platform, thus starting their dive.
|
288 |
+
The platform location is also important to assess how close the diver comes to its edge, which is relevant to scoring.
|
289 |
+
</td>
|
290 |
+
<td>
|
291 |
+
Pose Estimation of Diver
|
292 |
+
<img src='file/pose_estimation.png' height='70'>
|
293 |
+
</td>
|
294 |
+
<td>
|
295 |
+
The pose of the diver in the sequence of video frames is critical to understanding and assessing the dive.
|
296 |
+
We obtain 2D pose data with locations of various body parts, including the head, thorax, pelvis, shoulders, elbows, wrists, hips, knees, and ankles.
|
297 |
+
With this, we can recognize sub-actions being performed by the diver, such as a somersault, a twist, or an entry, and also assess the quality of that sub-action.
|
298 |
+
</td>
|
299 |
+
<td>
|
300 |
+
Splash
|
301 |
+
<img src='file/splash.png' height='90'>
|
302 |
+
</td>
|
303 |
+
<td>
|
304 |
+
Splash at entry into the pool is a conspicuous visual feature of a dive.
|
305 |
+
The size of the splash is an important element in traditional scoring of dives.
|
306 |
+
A large splash mars the end of a dive and also likely indicates a flaw in form at water entry.
|
307 |
+
</td>
|
308 |
+
</tr>
|
309 |
+
</table>
|
310 |
+
"""
|
311 |
+
)
|
312 |
+
gr.Markdown(
|
313 |
+
"""
|
314 |
+
1. Select one of the example diving videos.
|
315 |
+
2. Hit the **Abstract Symbols** button.
|
316 |
+
"""
|
317 |
+
)
|
318 |
+
|
319 |
+
with gr.Row(variant='panel'):
|
320 |
+
with gr.Column():
|
321 |
+
video = gr.Video(label="Video", format="mp4", include_audio=False)
|
322 |
+
abstract_symbols_btn = gr.Button("Abstract Symbols", variant='primary')
|
323 |
+
symbol_output = gr.HTML(label="Output")
|
324 |
+
examples = gr.Examples(examples = [['01_10.mp4'], ['01_11.mp4'], ['01_16.mp4'], ['01_33.mp4'], ['01_76.mp4'], ['01_140.mp4']], inputs=[video])
|
325 |
+
|
326 |
+
gr.Markdown(
|
327 |
+
"""
|
328 |
+
## Step 2: Calculate Logic-Based Errors and Generate Detailed Score Report
|
329 |
+
|
330 |
+
Using the abstracted symbols, we calculate different "errors" of the dive.
|
331 |
+
These errors are: **feet apart; height off board; distance from board; somersault position tightness; knee straightness; twist position straightness; over/under rotation; straightness of body during entry; and splash size.**
|
332 |
+
Each error is scored on a scale of 0-10, and are then averaged to reach a final score for the dive.
|
333 |
+
|
334 |
+
We then programmatically generate a detailed performance report containing different aspects of the dive, their percentile scores, and visual evidence.
|
335 |
+
This report can be seen as a compact, but highly detailed representation of quality of the dive performed.
|
336 |
+
It can be helpful for a number of reasons including as a support to human judges and as an educational tool to teach coaches, athletes, and judges how to score.
|
337 |
+
|
338 |
+
1. Click the **Get Score** button. The Score Report will be generated below. (Abstract Symbols first if you haven't already!)
|
339 |
+
"""
|
340 |
+
)
|
341 |
+
|
342 |
+
# with gr.Row():
|
343 |
+
get_score_btn = gr.Button("Get Score", interactive=False)
|
344 |
+
score_report = gr.HTML(label="Report")
|
345 |
+
# get_score_report_btn = gr.Button("Get Score Report")
|
346 |
+
video.change(fn=disable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
347 |
+
video.change(fn=enable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
|
348 |
+
abstract_symbols_btn.click(fn=get_abstracted_symbols, inputs=video, outputs=symbol_output).success(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
349 |
+
symbol_output.change(fn=disable_get_score_btn, inputs=abstract_symbols_btn, outputs=abstract_symbols_btn)
|
350 |
+
symbol_output.change(fn=enable_get_score_btn, inputs=get_score_btn, outputs=get_score_btn)
|
351 |
+
get_score_btn.click(fn=get_score_report, inputs=video, outputs=score_report)
|
352 |
+
|
353 |
+
|
354 |
+
############################################################################################################################################
|
355 |
+
|
356 |
+
|
357 |
+
demo_precomputed.queue()
|
358 |
+
demo_precomputed.launch(share=True)
|
359 |
+
######### gradio where we input first and second folder ##
|
360 |
+
# demo = gr.Interface(
|
361 |
+
# fn=get_html_from_finedivingkey,
|
362 |
+
# inputs=["text", "text"],
|
363 |
+
# outputs=["html"],
|
364 |
+
# )
|
365 |
+
|
366 |
+
# demo.launch(share=True, enable_queue=True,)
|