File size: 6,061 Bytes
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
67ab5d0
87930ea
 
94540c3
 
 
 
87930ea
94540c3
87930ea
 
4898006
87930ea
3268a02
87930ea
 
 
 
 
 
 
 
3268a02
b164fe5
 
 
 
 
3268a02
 
 
 
87930ea
 
 
 
 
 
 
 
 
3268a02
87930ea
 
 
b164fe5
87930ea
 
4898006
b164fe5
 
87930ea
b164fe5
 
87930ea
 
 
64e2453
87930ea
 
 
 
5d37f08
 
67ab5d0
7a52d3b
67ab5d0
5d37f08
67ab5d0
 
87930ea
3268a02
5d37f08
67ab5d0
3268a02
87930ea
 
 
 
 
5d37f08
 
7a52d3b
 
 
67ab5d0
bf9ca9b
7a52d3b
5d37f08
016ec2e
5d37f08
 
87930ea
 
 
b164fe5
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b164fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87930ea
b164fe5
 
 
 
 
 
94540c3
 
87930ea
b164fe5
87930ea
 
 
 
b164fe5
 
 
016ec2e
52385ae
b164fe5
87930ea
b164fe5
87930ea
 
 
 
b164fe5
87930ea
 
94540c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import time
import traceback
from dataclasses import dataclass, field

import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import spaces
import torch
import xxhash
from datasets import Audio
from transformers import AutoModel
from transformers.modeling_outputs import CausalLMOutputWithPast
import io

if gr.NO_RELOAD:
    diva_model = AutoModel.from_pretrained(
        "WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True
    )

    resampler = Audio(sampling_rate=16_000)


@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
    sr, y = audio_input
    x = xxhash.xxh32(bytes(y)).hexdigest()
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    a = resampler.decode_example(
        resampler.encode_example({"array": y, "sampling_rate": sr})
    )
    yield from diva_model.generate_stream(
        a["array"],
        (
            "Your name is DiVA, which stands for Distilled Voice Assistant. You were trained with early-fusion training to merge OpenAI's Whisper and Meta AI's Llama 3 8B to provide end-to-end voice processing. You should give brief and helpful answers, in a conversational style. The user is talking to you with their voice and you are responding with text."
            if prev_outs == None
            else None
        ),
        do_sample=do_sample,
        max_new_tokens=256,
        init_outputs=prev_outs,
        return_outputs=True,
    )


@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    stopped: bool = False
    conversation: list = field(default_factory=list)
    model_outs: any = None


def process_audio(audio: tuple, state: AppState):
    return audio, state


@spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True))
def response(state: AppState, audio: tuple):
    if not audio:
        return AppState()
    state.stream = audio[1]
    state.sampling_rate = audio[0]

    file_name = f"/tmp/{xxhash.xxh32(bytes(state.stream)).hexdigest()}.wav"

    sf.write(file_name, state.stream, state.sampling_rate, format="wav")

    state.conversation.append(
        {"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
    )
    if spaces.config.Config.zero_gpu:
        if state.model_outs is not None:
            state.model_outs = tuple(
                tuple(torch.tensor(vec).cuda() for vec in tup)
                for tup in state.model_outs
            )
    causal_outs = CausalLMOutputWithPast(past_key_values=state.model_outs)
    prev_outs = causal_outs
    start = False
    for resp, outs in diva_audio(
        (state.sampling_rate, state.stream),
        prev_outs=(prev_outs if prev_outs is not None else None),
    ):
        if not start:
            state.conversation.append({"role": "assistant", "content": resp})
            start = True
        else:
            state.conversation[-1]["content"] = resp
        # yield state, state.conversation

    del outs.logits
    del outs.hidden_states
    if spaces.config.Config.zero_gpu:
        outs = tuple(
            tuple(vec.cpu().numpy() for vec in tup) for tup in outs.past_key_values
        )
    return (
        AppState(conversation=state.conversation, model_outs=outs),
        state.conversation,
    )


def start_recording_user(state: AppState):
    return None


theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(
        c100="#82000019",
        c200="#82000033",
        c300="#8200004c",
        c400="#82000066",
        c50="#8200007f",
        c500="#8200007f",
        c600="#82000099",
        c700="#820000b2",
        c800="#820000cc",
        c900="#820000e5",
        c950="#820000f2",
    ),
    secondary_hue="rose",
    neutral_hue="stone",
)

js = """
async function main() {
  const script1 = document.createElement("script");
  script1.src = "https://cdn.jsdelivr.net/npm/onnxruntime-web@1.14.0/dist/ort.js";
  document.head.appendChild(script1)
  const script2 = document.createElement("script");
  script2.onload = async () =>  {
    console.log("vad loaded") ;
    var record = document.querySelector('.record-button');
    record.textContent = "Just Start Talking!"
    record.style = "width: 11vw"
    const myvad = await vad.MicVAD.new({
      onSpeechStart: () => {
        var record = document.querySelector('.record-button');
        if (record != null) {
          console.log(record);
          record.click();
        }
      },
      onSpeechEnd: (audio) => {
        var stop = document.querySelector('.stop-button');
        if (stop != null) {
          console.log(stop);
          stop.click();
        }
      }
    })
    myvad.start()
  }
  script2.src = "https://cdn.jsdelivr.net/npm/@ricky0123/vad-web@0.0.7/dist/bundle.min.js";
  script1.onload = () =>  {
    console.log("onnx loaded") 
    document.head.appendChild(script2)
  };
}
"""

js_reset = """
() => {
  var record = document.querySelector('.record-button');
  record.textContent = "Just Start Talking!"
  record.style = "width: 11vw"
}
"""

with gr.Blocks(theme=theme, js=js) as demo:
    with gr.Row():
        input_audio = gr.Audio(
            label="Input Audio",
            sources=["microphone"],
            type="numpy",
            streaming=False,
        )
    with gr.Row():
        chatbot = gr.Chatbot(label="Conversation", type="messages")
    state = gr.State(value=AppState())
    stream = input_audio.start_recording(
        process_audio,
        [input_audio, state],
        [input_audio, state],
    )
    respond = input_audio.stop_recording(
        response, [state, input_audio], [state, chatbot]
    )
    restart = respond.success(start_recording_user, [state], [input_audio]).then(
        lambda state: state, state, state, js=js_reset
    )

    cancel = gr.Button("Restart Conversation", variant="stop")
    cancel.click(
        lambda: (AppState(stopped=True), gr.Audio(recording=False)),
        None,
        [state, input_audio],
        cancels=[respond, restart],
    )

if __name__ == "__main__":
    demo.launch()