File size: 5,970 Bytes
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268a02
87930ea
 
 
 
 
 
 
 
3268a02
 
 
 
 
 
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268a02
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268a02
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e2453
87930ea
 
 
 
 
 
3268a02
 
 
87930ea
 
 
 
 
 
 
3268a02
87930ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import time
import traceback
from dataclasses import dataclass, field

import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import spaces
import torch
import xxhash
from datasets import Audio
from transformers import AutoModel
import io
from pydub import AudioSegment
import tempfile

from utils.vad import VadOptions, collect_chunks, get_speech_timestamps

diva_model = AutoModel.from_pretrained(
    "WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True
)

resampler = Audio(sampling_rate=16_000)


@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
    sr, y = audio_input
    x = xxhash.xxh32(bytes(y)).hexdigest()
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    a = resampler.decode_example(
        resampler.encode_example({"array": y, "sampling_rate": sr})
    )
    yield from diva_model.generate_stream(
        a["array"],
        None,
        do_sample=do_sample,
        max_new_tokens=256,
        init_outputs=prev_outs,
        return_outputs=True,
    )


def run_vad(ori_audio, sr):
    _st = time.time()
    try:
        audio = ori_audio
        audio = audio.astype(np.float32) / 32768.0
        sampling_rate = 16000
        if sr != sampling_rate:
            audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)

        vad_parameters = {}
        vad_parameters = VadOptions(**vad_parameters)
        speech_chunks = get_speech_timestamps(audio, vad_parameters)
        audio = collect_chunks(audio, speech_chunks)
        duration_after_vad = audio.shape[0] / sampling_rate

        if sr != sampling_rate:
            # resample to original sampling rate
            vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
        else:
            vad_audio = audio
        vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
        vad_audio_bytes = vad_audio.tobytes()

        return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
    except Exception as e:
        msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
        print(msg)
        return -1, ori_audio, round(time.time() - _st, 4)


def warm_up():
    frames = np.ones(2048)  # 1024 frames of 2 bytes each
    dur, frames, tcost = run_vad(frames, 16000)
    print(f"warm up done, time_cost: {tcost:.3f} s")


warm_up()


@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    pause_detected: bool = False
    started_talking: bool = False
    stopped: bool = False
    conversation: list = field(default_factory=list)
    model_outs: any = None


def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
    """Take in the stream, determine if a pause happened"""

    temp_audio = audio

    dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
    duration = len(audio) / sampling_rate

    if dur_vad > 0.5 and not state.started_talking:
        print("started talking")
        state.started_talking = True
        return False

    print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")

    return (duration - dur_vad) > 1


def process_audio(audio: tuple, state: AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
    else:
        state.stream = np.concatenate((state.stream, audio[1]))

    pause_detected = determine_pause(state.stream, state.sampling_rate, state)
    state.pause_detected = pause_detected

    if state.pause_detected and state.started_talking:
        return gr.Audio(recording=False), state
    return None, state


def response(state: AppState):
    if not state.pause_detected and not state.started_talking:
        return AppState()

    file_name = f"/tmp/{xxhash.xxh32(bytes(state.stream)).hexdigest()}.wav"

    sf.write(file_name, state.stream, state.sampling_rate, format="wav")

    state.conversation.append(
        {"role": "user", "content": {"path": file_name, "mime_type": "audio/wav"}}
    )

    start = False
    for resp, outs in diva_audio(
        (state.sampling_rate, state.stream), prev_outs=state.model_outs
    ):
        if not start:
            state.conversation.append({"role": "assistant", "content": resp})
            start = True
        else:
            state.conversation[-1]["content"] = resp
        yield state, state.conversation

    yield AppState(conversation=state.conversation, model_outs=outs), state.conversation


def start_recording_user(state: AppState):
    if not state.stopped:
        return gr.Audio(recording=True)


theme = gr.themes.Soft(
    primary_hue=gr.themes.Color(
        c100="#82000019",
        c200="#82000033",
        c300="#8200004c",
        c400="#82000066",
        c50="#8200007f",
        c500="#8200007f",
        c600="#82000099",
        c700="#820000b2",
        c800="#820000cc",
        c900="#820000e5",
        c950="#820000f2",
    ),
    secondary_hue="rose",
    neutral_hue="stone",
)

with gr.Blocks(theme=theme) as demo:
    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(
                label="Input Audio", sources="microphone", type="numpy"
            )
        with gr.Column():
            chatbot = gr.Chatbot(label="Conversation", type="messages")
    state = gr.State(value=AppState())

    stream = input_audio.stream(
        process_audio,
        [input_audio, state],
        [input_audio, state],
        stream_every=0.50,
        time_limit=30,
    )
    respond = input_audio.stop_recording(response, [state], [state, chatbot])
    respond.then(start_recording_user, [state], [input_audio])

    cancel = gr.Button("Stop Conversation", variant="stop")
    cancel.click(
        lambda: (AppState(stopped=True), gr.Audio(recording=False)),
        None,
        [state, input_audio],
        cancels=[respond, stream],
    )


demo.launch(share=True)