File size: 15,519 Bytes
4d49b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from smolagents import Tool
import pandas as pd
import os
import tempfile
import requests
from urllib.parse import urlparse
import json
import re
from datetime import datetime, timedelta

class ReverseTextTool(Tool):
    name = "reverse_text"
    description = "Reverses the text in a string."
    inputs = {
        "text": {
            "type": "string",
            "description": "The text to reverse."
        }
    }
    output_type = "string"

    def forward(self, text: str) -> str:
        return text[::-1]

class ExtractTextFromImageTool(Tool):
    name = "extract_text_from_image"
    description = "Extracts text from an image file using OCR."
    inputs = {
        "image_path": {
            "type": "string",
            "description": "Path to the image file."
        }
    }
    output_type = "string"

    def forward(self, image_path: str) -> str:
        try:
            # Try to import pytesseract
            import pytesseract
            from PIL import Image
            
            # Open the image
            image = Image.open(image_path)
            
            # Try different configurations for better results
            configs = [
                '--psm 6',  # Assume a single uniform block of text
                '--psm 3',  # Automatic page segmentation, but no OSD
                '--psm 1',  # Automatic page segmentation with OSD
            ]
            
            results = []
            for config in configs:
                try:
                    text = pytesseract.image_to_string(image, config=config)
                    if text.strip():
                        results.append(text)
                except Exception:
                    continue
            
            if results:
                # Return the longest result, which is likely the most complete
                return f"Extracted text from image:\n\n{max(results, key=len)}"
            else:
                return "No text could be extracted from the image."
        except ImportError:
            return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
        except Exception as e:
            return f"Error extracting text from image: {str(e)}"

class AnalyzeCSVTool(Tool):
    name = "analyze_csv_file"
    description = "Analyzes a CSV file and provides information about its contents."
    inputs = {
        "file_path": {
            "type": "string",
            "description": "Path to the CSV file."
        },
        "query": {
            "type": "string",
            "description": "Optional query about the data.",
            "default": "",
            "nullable": True
        }
    }
    output_type = "string"

    def forward(self, file_path: str, query: str = "") -> str:
        try:
            # Read CSV file with different encodings if needed
            for encoding in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']:
                try:
                    df = pd.read_csv(file_path, encoding=encoding)
                    break
                except UnicodeDecodeError:
                    continue
            else:
                return "Error: Could not read the CSV file with any of the attempted encodings."
            
            # Basic information
            result = f"CSV file has {len(df)} rows and {len(df.columns)} columns.\n"
            result += f"Columns: {', '.join(df.columns)}\n\n"
            
            # If there's a specific query
            if query:
                if "count" in query.lower():
                    result += f"Row count: {len(df)}\n"
                
                # Look for column-specific queries
                for col in df.columns:
                    if col.lower() in query.lower():
                        result += f"\nColumn '{col}' information:\n"
                        if pd.api.types.is_numeric_dtype(df[col]):
                            result += f"Min: {df[col].min()}\n"
                            result += f"Max: {df[col].max()}\n"
                            result += f"Mean: {df[col].mean()}\n"
                            result += f"Median: {df[col].median()}\n"
                        else:
                            # For categorical data
                            value_counts = df[col].value_counts().head(10)
                            result += f"Unique values: {df[col].nunique()}\n"
                            result += f"Top values:\n{value_counts.to_string()}\n"
                
            # General statistics for all columns
            else:
                # For numeric columns
                numeric_cols = df.select_dtypes(include=['number']).columns
                if len(numeric_cols) > 0:
                    result += "Numeric columns statistics:\n"
                    result += df[numeric_cols].describe().to_string()
                    result += "\n\n"
                
                # For categorical columns, show counts of unique values
                cat_cols = df.select_dtypes(exclude=['number']).columns
                if len(cat_cols) > 0:
                    result += "Categorical columns:\n"
                    for col in cat_cols[:5]:  # Limit to first 5 columns
                        result += f"- {col}: {df[col].nunique()} unique values\n"
            
            return result
        except Exception as e:
            return f"Error analyzing CSV file: {str(e)}"

class AnalyzeExcelTool(Tool):
    name = "analyze_excel_file"
    description = "Analyzes an Excel file and provides information about its contents."
    inputs = {
        "file_path": {
            "type": "string",
            "description": "Path to the Excel file."
        },
        "query": {
            "type": "string",
            "description": "Optional query about the data.",
            "default": "",
            "nullable": True
        },
        "sheet_name": {
            "type": "string",
            "description": "Name of the sheet to analyze (defaults to first sheet).",
            "default": None,
            "nullable": True
        }
    }
    output_type = "string"

    def forward(self, file_path: str, query: str = "", sheet_name: str = None) -> str:
        try:
            # Read sheet names first
            excel_file = pd.ExcelFile(file_path)
            sheet_names = excel_file.sheet_names
            
            # Info about all sheets
            result = f"Excel file contains {len(sheet_names)} sheets: {', '.join(sheet_names)}\n\n"
            
            # If sheet name is specified, use it; otherwise use first sheet
            if sheet_name is None:
                sheet_name = sheet_names[0]
            elif sheet_name not in sheet_names:
                return f"Error: Sheet '{sheet_name}' not found. Available sheets: {', '.join(sheet_names)}"
            
            # Read the specified sheet
            df = pd.read_excel(file_path, sheet_name=sheet_name)
            
            # Basic information
            result += f"Sheet '{sheet_name}' has {len(df)} rows and {len(df.columns)} columns.\n"
            result += f"Columns: {', '.join(df.columns)}\n\n"
            
            # Handle query similar to CSV tool
            if query:
                if "count" in query.lower():
                    result += f"Row count: {len(df)}\n"
                
                # Look for column-specific queries
                for col in df.columns:
                    if col.lower() in query.lower():
                        result += f"\nColumn '{col}' information:\n"
                        if pd.api.types.is_numeric_dtype(df[col]):
                            result += f"Min: {df[col].min()}\n"
                            result += f"Max: {df[col].max()}\n"
                            result += f"Mean: {df[col].mean()}\n"
                            result += f"Median: {df[col].median()}\n"
                        else:
                            # For categorical data
                            value_counts = df[col].value_counts().head(10)
                            result += f"Unique values: {df[col].nunique()}\n"
                            result += f"Top values:\n{value_counts.to_string()}\n"
            else:
                # For numeric columns
                numeric_cols = df.select_dtypes(include=['number']).columns
                if len(numeric_cols) > 0:
                    result += "Numeric columns statistics:\n"
                    result += df[numeric_cols].describe().to_string()
                    result += "\n\n"
                
                # For categorical columns, show counts of unique values
                cat_cols = df.select_dtypes(exclude=['number']).columns
                if len(cat_cols) > 0:
                    result += "Categorical columns:\n"
                    for col in cat_cols[:5]:  # Limit to first 5 columns
                        result += f"- {col}: {df[col].nunique()} unique values\n"
            
            return result
        except Exception as e:
            return f"Error analyzing Excel file: {str(e)}"

class DateCalculatorTool(Tool):
    name = "date_calculator"
    description = "Performs date calculations like adding days, formatting dates, etc."
    inputs = {
        "query": {
            "type": "string",
            "description": "The date calculation to perform (e.g., 'What day is 10 days from today?', 'Format 2023-05-15 as MM/DD/YYYY')"
        }
    }
    output_type = "string"

    def forward(self, query: str) -> str:
        try:
            # Get current date/time
            if re.search(r'(today|now|current date|current time)', query, re.IGNORECASE):
                now = datetime.now()
                
                if 'time' in query.lower():
                    return f"Current date and time: {now.strftime('%Y-%m-%d %H:%M:%S')}"
                else:
                    return f"Today's date: {now.strftime('%Y-%m-%d')}"
            
            # Add days to a date
            add_match = re.search(r'(what|when).+?(\d+)\s+(day|days|week|weeks|month|months|year|years)\s+(from|after)\s+(.+)', query, re.IGNORECASE)
            if add_match:
                amount = int(add_match.group(2))
                unit = add_match.group(3).lower()
                date_text = add_match.group(5).strip()
                
                # Parse the date
                if date_text.lower() in ['today', 'now']:
                    base_date = datetime.now()
                else:
                    try:
                        # Try various date formats
                        for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']:
                            try:
                                base_date = datetime.strptime(date_text, fmt)
                                break
                            except ValueError:
                                continue
                        else:
                            return f"Could not parse date: {date_text}"
                    except Exception as e:
                        return f"Error parsing date: {e}"
                
                # Calculate new date
                if 'day' in unit:
                    new_date = base_date + timedelta(days=amount)
                elif 'week' in unit:
                    new_date = base_date + timedelta(weeks=amount)
                elif 'month' in unit:
                    # Simplified month calculation
                    new_month = base_date.month + amount
                    new_year = base_date.year + (new_month - 1) // 12
                    new_month = ((new_month - 1) % 12) + 1
                    new_date = base_date.replace(year=new_year, month=new_month)
                elif 'year' in unit:
                    new_date = base_date.replace(year=base_date.year + amount)
                
                return f"Date {amount} {unit} from {base_date.strftime('%Y-%m-%d')} is {new_date.strftime('%Y-%m-%d')}"
            
            # Format a date
            format_match = re.search(r'format\s+(.+?)\s+as\s+(.+)', query, re.IGNORECASE)
            if format_match:
                date_text = format_match.group(1).strip()
                format_spec = format_match.group(2).strip()
                
                # Parse the date
                if date_text.lower() in ['today', 'now']:
                    date_obj = datetime.now()
                else:
                    try:
                        # Try various date formats
                        for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']:
                            try:
                                date_obj = datetime.strptime(date_text, fmt)
                                break
                            except ValueError:
                                continue
                        else:
                            return f"Could not parse date: {date_text}"
                    except Exception as e:
                        return f"Error parsing date: {e}"
                
                # Convert format specification to strftime format
                format_mapping = {
                    'YYYY': '%Y',
                    'YY': '%y',
                    'MM': '%m',
                    'DD': '%d',
                    'HH': '%H',
                    'mm': '%M',
                    'ss': '%S'
                }
                
                strftime_format = format_spec
                for key, value in format_mapping.items():
                    strftime_format = strftime_format.replace(key, value)
                
                return f"Formatted date: {date_obj.strftime(strftime_format)}"
            
            return "I couldn't understand the date calculation query."
        except Exception as e:
            return f"Error performing date calculation: {str(e)}"

class DownloadFileTool(Tool):
    name = "download_file"
    description = "Downloads a file from a URL and saves it locally."
    inputs = {
        "url": {
            "type": "string",
            "description": "The URL to download from."
        },
        "filename": {
            "type": "string",
            "description": "Optional filename to save as (default: derived from URL).",
            "default": None,
            "nullable": True
        }
    }
    output_type = "string"

    def forward(self, url: str, filename: str = None) -> str:
        try:
            # Parse URL to get filename if not provided
            if not filename:
                path = urlparse(url).path
                filename = os.path.basename(path)
                if not filename:
                    # Generate a random name if we couldn't extract one
                    import uuid
                    filename = f"downloaded_{uuid.uuid4().hex[:8]}"
            
            # Create temporary file
            temp_dir = tempfile.gettempdir()
            filepath = os.path.join(temp_dir, filename)
            
            # Download the file
            response = requests.get(url, stream=True)
            response.raise_for_status()
            
            # Save the file
            with open(filepath, 'wb') as f:
                for chunk in response.iter_content(chunk_size=8192):
                    f.write(chunk)
            
            return f"File downloaded to {filepath}. You can now analyze this file."
        except Exception as e:
            return f"Error downloading file: {str(e)}"