File size: 23,790 Bytes
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66797b4
 
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e702d
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1bfd5b
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ad041
52ca9c9
 
 
 
0947807
 
 
 
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ad041
f1bfd5b
 
 
 
25c993b
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd5096e
52ca9c9
 
 
 
 
 
 
 
 
 
4c8bd95
52ca9c9
 
25c993b
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
c236c27
 
fd5096e
52ca9c9
 
 
 
 
 
 
 
 
 
 
eafe020
52ca9c9
 
 
 
47ad041
52ca9c9
 
25c993b
52ca9c9
 
 
 
 
 
4c8bd95
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e702d
67e568e
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ad041
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ad041
25c993b
52ca9c9
 
 
 
 
 
47ad041
25c993b
52ca9c9
 
 
 
 
47ad041
25c993b
52ca9c9
 
 
 
 
 
47ad041
25c993b
52ca9c9
 
6a94f14
52ca9c9
f1bfd5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import argparse
import os
import random
from collections import defaultdict

import cv2
import re

import numpy as np
from PIL import Image
import torch
import html
import gradio as gr

import torchvision.transforms as T
import torch.backends.cudnn as cudnn

from minigpt4.common.config import Config

from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, Chat

# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *

import warnings
warnings.filterwarnings("ignore")

def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", default='eval_configs/minigptv2_eval.yaml',
                        help="path to configuration file.")
    parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
             "in xxx=yyy format will be merged into config file (deprecate), "
             "change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args


random.seed(42)
np.random.seed(42)
torch.manual_seed(42)

cudnn.benchmark = False
cudnn.deterministic = True

print('Initializing Chat')
args = parse_args()
cfg = Config(args)

device = 'cuda:{}'.format(args.gpu_id)

model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to(device)
bounding_box_size = 100

vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)

model = model.eval()

CONV_VISION = Conversation(
    system="",
    roles=(r"<s>[INST] ", r" [/INST]"),
    messages=[],
    offset=2,
    sep_style=SeparatorStyle.SINGLE,
    sep="",
)


def extract_substrings(string):
    # first check if there is no-finished bracket
    index = string.rfind('}')
    if index != -1:
        string = string[:index + 1]

    pattern = r'<p>(.*?)\}(?!<)'
    matches = re.findall(pattern, string)
    substrings = [match for match in matches]

    return substrings


def is_overlapping(rect1, rect2):
    x1, y1, x2, y2 = rect1
    x3, y3, x4, y4 = rect2
    return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)


def computeIoU(bbox1, bbox2):
    x1, y1, x2, y2 = bbox1
    x3, y3, x4, y4 = bbox2
    intersection_x1 = max(x1, x3)
    intersection_y1 = max(y1, y3)
    intersection_x2 = min(x2, x4)
    intersection_y2 = min(y2, y4)
    intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
    bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
    bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
    union_area = bbox1_area + bbox2_area - intersection_area
    iou = intersection_area / union_area
    return iou


def save_tmp_img(visual_img):
    file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg"
    file_path = "/tmp/gradio" + file_name
    visual_img.save(file_path)
    return file_path


def mask2bbox(mask):
    if mask is None:
        return ''
    mask = mask.resize([100, 100], resample=Image.NEAREST)
    mask = np.array(mask)[:, :, 0]

    rows = np.any(mask, axis=1)
    cols = np.any(mask, axis=0)

    if rows.sum():
        # Get the top, bottom, left, and right boundaries
        rmin, rmax = np.where(rows)[0][[0, -1]]
        cmin, cmax = np.where(cols)[0][[0, -1]]
        bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax)
    else:
        bbox = ''

    return bbox


def escape_markdown(text):
    # List of Markdown special characters that need to be escaped
    md_chars = ['<', '>']

    # Escape each special character
    for char in md_chars:
        text = text.replace(char, '\\' + char)

    return text


def reverse_escape(text):
    md_chars = ['\\<', '\\>']

    for char in md_chars:
        text = text.replace(char, char[1:])

    return text


colors = [
    (255, 0, 0),
    (0, 255, 0),
    (0, 0, 255),
    (210, 210, 0),
    (255, 0, 255),
    (0, 255, 255),
    (114, 128, 250),
    (0, 165, 255),
    (0, 128, 0),
    (144, 238, 144),
    (238, 238, 175),
    (255, 191, 0),
    (0, 128, 0),
    (226, 43, 138),
    (255, 0, 255),
    (0, 215, 255),
]

color_map = {
    f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
    color_id, color in enumerate(colors)
}

used_colors = colors


def visualize_all_bbox_together(image, generation):
    if image is None:
        return None, ''

    generation = html.unescape(generation)

    image_width, image_height = image.size
    image = image.resize([500, int(500 / image_width * image_height)])
    image_width, image_height = image.size

    string_list = extract_substrings(generation)
    if string_list:  # it is grounding or detection
        mode = 'all'
        entities = defaultdict(list)
        i = 0
        j = 0
        for string in string_list:
            try:
                obj, string = string.split('</p>')
            except ValueError:
                print('wrong string: ', string)
                continue
            bbox_list = string.split('<delim>')
            flag = False
            for bbox_string in bbox_list:
                integers = re.findall(r'-?\d+', bbox_string)
                if len(integers) == 4:
                    x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
                    left = x0 / bounding_box_size * image_width
                    bottom = y0 / bounding_box_size * image_height
                    right = x1 / bounding_box_size * image_width
                    top = y1 / bounding_box_size * image_height

                    entities[obj].append([left, bottom, right, top])

                    j += 1
                    flag = True
            if flag:
                i += 1
    else:
        integers = re.findall(r'-?\d+', generation)

        if len(integers) == 4:  # it is refer
            mode = 'single'

            entities = list()
            x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
            left = x0 / bounding_box_size * image_width
            bottom = y0 / bounding_box_size * image_height
            right = x1 / bounding_box_size * image_width
            top = y1 / bounding_box_size * image_height
            entities.append([left, bottom, right, top])
        else:
            # don't detect any valid bbox to visualize
            return None, ''

    if len(entities) == 0:
        return None, ''

    if isinstance(image, Image.Image):
        image_h = image.height
        image_w = image.width
        image = np.array(image)

    elif isinstance(image, str):
        if os.path.exists(image):
            pil_img = Image.open(image).convert("RGB")
            image = np.array(pil_img)[:, :, [2, 1, 0]]
            image_h = pil_img.height
            image_w = pil_img.width
        else:
            raise ValueError(f"invaild image path, {image}")
    elif isinstance(image, torch.Tensor):

        image_tensor = image.cpu()
        reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
        reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
        image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
        pil_img = T.ToPILImage()(image_tensor)
        image_h = pil_img.height
        image_w = pil_img.width
        image = np.array(pil_img)[:, :, [2, 1, 0]]
    else:
        raise ValueError(f"invaild image format, {type(image)} for {image}")

    indices = list(range(len(entities)))

    new_image = image.copy()

    previous_bboxes = []
    # size of text
    text_size = 0.5
    # thickness of text
    text_line = 1  # int(max(1 * min(image_h, image_w) / 512, 1))
    box_line = 2
    (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
    base_height = int(text_height * 0.675)
    text_offset_original = text_height - base_height
    text_spaces = 2

    # num_bboxes = sum(len(x[-1]) for x in entities)
    used_colors = colors  # random.sample(colors, k=num_bboxes)

    color_id = -1
    for entity_idx, entity_name in enumerate(entities):
        if mode == 'single' or mode == 'identify':
            bboxes = entity_name
            bboxes = [bboxes]
        else:
            bboxes = entities[entity_name]
        color_id += 1
        for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
            skip_flag = False
            orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm)

            color = used_colors[entity_idx % len(used_colors)]  # tuple(np.random.randint(0, 255, size=3).tolist())
            new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)

            if mode == 'all':
                l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1

                x1 = orig_x1 - l_o
                y1 = orig_y1 - l_o

                if y1 < text_height + text_offset_original + 2 * text_spaces:
                    y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
                    x1 = orig_x1 + r_o

                # add text background
                (text_width, text_height), _ = cv2.getTextSize(f"  {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
                                                               text_line)
                text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
                            text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1

                for prev_bbox in previous_bboxes:
                    if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
                            prev_bbox['phrase'] == entity_name:
                        skip_flag = True
                        break
                    while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
                        text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
                        text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
                        y1 += (text_height + text_offset_original + 2 * text_spaces)

                        if text_bg_y2 >= image_h:
                            text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
                            text_bg_y2 = image_h
                            y1 = image_h
                            break
                if not skip_flag:
                    alpha = 0.5
                    for i in range(text_bg_y1, text_bg_y2):
                        for j in range(text_bg_x1, text_bg_x2):
                            if i < image_h and j < image_w:
                                if j < text_bg_x1 + 1.35 * c_width:
                                    # original color
                                    bg_color = color
                                else:
                                    # white
                                    bg_color = [255, 255, 255]
                                new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
                                    np.uint8)

                    cv2.putText(
                        new_image, f"  {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
                        cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
                    )

                    previous_bboxes.append(
                        {'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})

    if mode == 'all':
        def color_iterator(colors):
            while True:
                for color in colors:
                    yield color

        color_gen = color_iterator(colors)

        # Add colors to phrases and remove <p></p>
        def colored_phrases(match):
            phrase = match.group(1)
            color = next(color_gen)
            return f'<span style="color:rgb{color}">{phrase}</span>'

        generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
        generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
    else:
        generation_colored = ''

    pil_image = Image.fromarray(new_image)
    return pil_image, generation_colored


def gradio_reset(chat_state, img_list, path_list):
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    if isinstance(path_list, list):
        for path in path_list:
            os.remove(path)
        path_list.clear()
    return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat',
                                                                    interactive=True), chat_state, img_list


def image_upload_trigger(upload_flag, replace_flag, img_list):
    # set the upload flag to true when receive a new image.
    # if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
    upload_flag = 1
    if img_list:
        replace_flag = 1
    return upload_flag, replace_flag


def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
    # set the upload flag to true when receive a new image.
    # if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
    upload_flag = 1
    if img_list or replace_flag == 1:
        replace_flag = 1

    return upload_flag, replace_flag


def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag, path_list):
    if len(user_message) == 0:
        text_box_show = 'Input should not be empty!'
    else:
        text_box_show = ''

    if isinstance(gr_img, dict):
        gr_img, mask = gr_img['image'], gr_img['mask']
    else:
        mask = None

    if '[identify]' in user_message:
        # check if user provide bbox in the text input
        integers = re.findall(r'-?\d+', user_message)
        if len(integers) != 4:  # no bbox in text
            bbox = mask2bbox(mask)
            user_message = user_message + bbox

    if chat_state is None:
        chat_state = CONV_VISION.copy()

    if upload_flag:
        if replace_flag:
            chat_state = CONV_VISION.copy()  # new image, reset everything
            replace_flag = 0
            chatbot = []
        img_list = []
        llm_message = chat.upload_img(gr_img, chat_state, img_list)
        upload_flag = 0

    chat.ask(user_message, chat_state)

    chatbot = chatbot + [[user_message, None]]

    if '[identify]' in user_message:
        visual_img, _ = visualize_all_bbox_together(gr_img, user_message)
        if visual_img is not None:
            file_path = save_tmp_img(visual_img)
            # path_list.append(file_path)
            chatbot = chatbot + [[(file_path,), None]]

    return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag


def gradio_answer(chatbot, chat_state, img_list, temperature):
    llm_message = chat.answer(conv=chat_state,
                              img_list=img_list,
                              temperature=temperature,
                              max_new_tokens=500,
                              max_length=2000)[0]
    chatbot[-1][1] = llm_message
    return chatbot, chat_state


def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
    if len(img_list) > 0:
        if not isinstance(img_list[0], torch.Tensor):
            chat.encode_img(img_list)
    streamer = chat.stream_answer(conv=chat_state,
                                  img_list=img_list,
                                  temperature=temperature,
                                  max_new_tokens=500,
                                  max_length=2000)
    output = ''
    for new_output in streamer:
        escapped = escape_markdown(new_output)
        output += escapped
        chatbot[-1][1] = output
        yield chatbot, chat_state
    print(output)
    chat_state.messages[-1][1] = '</s>'
    return chatbot, chat_state


def gradio_visualize(chatbot, gr_img, path_list):
    if isinstance(gr_img, dict):
        gr_img, mask = gr_img['image'], gr_img['mask']

    unescaped = reverse_escape(chatbot[-1][1])
    visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped)
    if visual_img is not None:
        if len(generation_color):
            chatbot[-1][1] = generation_color
        file_path = save_tmp_img(visual_img)
        # path_list.append(file_path)
        chatbot = chatbot + [[None, (file_path,)]]

    return chatbot


def gradio_taskselect(idx):
    prompt_list = [
        '',
        '[grounding] describe this image in detail',
        '[refer] ',
        '[detection] ',
        '[identify] what is this ',
        '[vqa] '
    ]
    instruct_list = [
        '**Hint:** Type in whatever you want',
        '**Hint:** Send the command to generate a grounded image description',
        '**Hint:** Type in a phrase about an object in the image and send the command',
        '**Hint:** Type in a caption or phrase, and see object locations in the image',
        '**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw',
        '**Hint:** Send a question to get a short answer',
    ]
    return prompt_list[idx], instruct_list[idx]




chat = Chat(model, vis_processor, device=device)

title = """<h1 align="center">MiniGPT-v2 Demo</h1>"""
description = 'Welcome to Our MiniGPT-v2 Chatbot Demo!'
# article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4/blob/main/MiniGPTv2.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a></p><p><a href='https://www.youtube.com/watch?v=atFCwV2hSY4'><img src='https://img.shields.io/badge/YouTube-Video-red'></a></p>"""
article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""

introduction = '''
For Abilities Involving Visual Grounding:
1. Grounding: CLICK **Send** to generate a grounded image description.
2. Refer: Input a referring object and CLICK **Send**.
3. Detection: Write a caption or phrase, and CLICK **Send**.
4. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time).
5. VQA: Input a visual question and CLICK **Send**.
6. No Tag: Input whatever you want and CLICK **Send** without any tagging

You can also simply chat in free form!
'''

text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False,
                        scale=8)
with gr.Blocks() as demo:
    gr.Markdown(title)
    # gr.Markdown(description)
    gr.Markdown(article)

    with gr.Row():
        with gr.Column(scale=0.5):
            image = gr.Image(type="pil", tool='sketch', brush_radius=20)

            temperature = gr.Slider(
                minimum=0.1,
                maximum=1.5,
                value=0.6,
                step=0.1,
                interactive=True,
                label="Temperature",
            )

            clear = gr.Button("Restart")

            gr.Markdown(introduction)

        with gr.Column():
            chat_state = gr.State(value=None)
            img_list = gr.State(value=[])
            chatbot = gr.Chatbot(label='MiniGPT-v2')

            dataset = gr.Dataset(
                components=[gr.Textbox(visible=False)],
                samples=[['No Tag'], ['Grounding'], ['Refer'], ['Detection'], ['Identify'], ['VQA']],
                type="index",
                label='Task Shortcuts',
            )
            task_inst = gr.Markdown('**Hint:** Upload your image and chat')
            with gr.Row():
                text_input.render()
                send = gr.Button("Send", variant='primary', size='sm', scale=1)

    upload_flag = gr.State(value=0)
    replace_flag = gr.State(value=0)
    path_list = gr.State(value=[])
    image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag])

    with gr.Row():
        with gr.Column():
            gr.Examples(examples=[
                ["examples_v2/office.jpg", "[grounding] describe this image in detail", upload_flag, replace_flag,
                 img_list],
                ["examples_v2/sofa.jpg", "[detection] sofas", upload_flag, replace_flag, img_list],
                ["examples_v2/2000x1372_wmkn_0012149409555.jpg", "[refer] the world cup", upload_flag, replace_flag,
                 img_list],
                ["examples_v2/KFC-20-for-20-Nuggets.jpg", "[identify] what is this {<4><50><30><65>}", upload_flag,
                 replace_flag, img_list],
            ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
                outputs=[upload_flag, replace_flag])
        with gr.Column():
            gr.Examples(examples=[
                ["examples_v2/glip_test.jpg", "[vqa] where should I hide in this room when playing hide and seek",
                 upload_flag, replace_flag, img_list],
                ["examples_v2/float.png", "Please write a poem about the image", upload_flag, replace_flag, img_list],
                ["examples_v2/thief.png", "Is the weapon fateful", upload_flag, replace_flag, img_list],
                ["examples_v2/cockdial.png", "What might happen in this image in the next second", upload_flag,
                 replace_flag, img_list],
            ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
                outputs=[upload_flag, replace_flag])

    dataset.click(
        gradio_taskselect,
        inputs=[dataset],
        outputs=[text_input, task_inst],
        show_progress="hidden",
        postprocess=False,
        queue=False,
    )

    text_input.submit(
        gradio_ask,
        [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag, path_list],
        [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
    ).success(
        gradio_stream_answer,
        [chatbot, chat_state, img_list, temperature],
        [chatbot, chat_state]
    ).success(
        gradio_visualize,
        [chatbot, image, path_list],
        [chatbot],
        queue=False,
    )

    send.click(
        gradio_ask,
        [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag, path_list],
        [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag]
    ).success(
        gradio_stream_answer,
        [chatbot, chat_state, img_list, temperature],
        [chatbot, chat_state]
    ).success(
        gradio_visualize,
        [chatbot, image, path_list],
        [chatbot],
    )

    clear.click(gradio_reset, [chat_state, img_list, path_list], [chatbot, image, text_input, chat_state, img_list], queue=False)

demo.launch(enable_queue=True)