File size: 16,750 Bytes
52ca9c9
 
 
 
 
 
 
 
 
9763171
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9763171
 
52ca9c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import logging
import random

import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn

from minigpt4.common.registry import registry
from minigpt4.models.base_model import BaseModel
from transformers import StoppingCriteria, StoppingCriteriaList



class MiniGPTBase(BaseModel):
    """
    Base class for MiniGPT-4 and MiniGPT-v2
    """

    def __init__(
        self,
        vit_model="eva_clip_g",
        img_size=224,
        drop_path_rate=0,
        use_grad_checkpoint=False,
        vit_precision="fp16",
        freeze_vit=True,
        llama_model="",
        max_txt_len=32,
        max_context_len=3800,
        prompt_template="",
        end_sym='\n',
        low_resource=False,  # use 8 bit and put vit in cpu
        device_8bit=0,  # the device of 8bit model should be set when loading and cannot be changed anymore.
        lora_r=0,  # lora_r means lora is not used
        lora_target_modules=["q_proj", "v_proj"],
        lora_alpha=16,
        lora_dropout=0.05,
    ):
        super().__init__()

        self.llama_model, self.llama_tokenizer = self.init_llm(
            llama_model_path=llama_model,
            low_resource=low_resource,
            low_res_device=device_8bit,
            lora_r=lora_r,
            lora_target_modules=lora_target_modules,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )

        self.visual_encoder, self.ln_vision = self.init_vision_encoder(
            vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, freeze_vit
        )

        self.max_txt_len = max_txt_len
        self.max_context_len = max_context_len
        self.end_sym = end_sym

        self.prompt_template = prompt_template
        self.prompt_list = []

    def vit_to_cpu(self):
        self.ln_vision.to("cpu")
        self.ln_vision.float()
        self.visual_encoder.to("cpu")
        self.visual_encoder.float()

    def get_context_emb(self, prompt, img_list):
        device = img_list[0].device
        prompt_segs = prompt.split('<ImageHere>')
        assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
        seg_tokens = [
            self.llama_tokenizer(
                seg, return_tensors="pt", add_special_tokens=i==0).to(device).input_ids # only add bos to the first seg
            for i, seg in enumerate(prompt_segs)
        ]
        seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]

        mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
        mixed_embs = torch.cat(mixed_embs, dim=1)
        return mixed_embs

    def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
        if prompts is None or len(prompts) == 0:
            # prompts is not provided, just return the original image embedding
            return img_embeds, atts_img
        elif img_embeds is None:
            # prompt is provided but there is no image embedding. return the prompt embedding in right padding
            self.llama_tokenizer.padding_side = "right"
            prompt_tokens = self.llama_tokenizer(
                prompts,
                return_tensors="pt",
                padding="longest",
                add_special_tokens=False
            ).to(self.device)
            prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
            atts_prompt = prompt_tokens.attention_mask
            return prompt_embeds, atts_prompt
        else:
            # return the multi-modal embedding in right padding
            emb_lists = []
            if isinstance(prompts, str):
                prompts = [prompts] * len(img_embeds)

            for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
                pn = each_img_embed.shape[-2]
                if lengths is not None:
                    each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
                    each_img_embed = each_img_embed[:lengths[idx] * pn]
                p_segs = each_prompt.split('<ImageHere>')
                interleave_emb = []
                for idx, seg in enumerate(p_segs[:-1]):
                    p_tokens = self.llama_tokenizer(
                        seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
                    p_embed = self.embed_tokens(p_tokens.input_ids)
                    interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx * pn:(idx + 1) * pn]], dim=1))
                wrapped_emb = torch.cat(interleave_emb, dim=1)
                p_tokens = self.llama_tokenizer(
                    p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
                p_embed = self.embed_tokens(p_tokens.input_ids)
                wrapped_emb = torch.cat([wrapped_emb, p_embed], dim=1)
                emb_lists.append(wrapped_emb)

            emb_lens = [emb.shape[1] for emb in emb_lists]
            pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))

            max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
            wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
            wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
            
            for i, emb in enumerate(emb_lists):
                length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
                wrapped_embs[i, :length] = emb[:, :length]
                wrapped_atts[i, :length] = 1
            return wrapped_embs, wrapped_atts

    def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
        """
        Concatenate the batched input embedding and batched output embedding together.
        Both the input and the output embedding should be right padded.
        """
        input_lens = []
        cat_embs = []
        cat_atts = []
        for i in range(input_embs.size(0)):
            input_len = input_atts[i].sum()
            input_lens.append(input_len)
            cat_embs.append(
                torch.cat([
                    input_embs[i][:input_len],
                    output_embs[i],
                    input_embs[i][input_len:]
                ])
            )
            cat_atts.append(
                torch.cat([
                    input_atts[i][:input_len],
                    output_atts[i],
                    input_atts[i][input_len:]
                ])
            )
        cat_embs = torch.stack(cat_embs)
        cat_atts = torch.stack(cat_atts)
        return cat_embs, cat_atts, input_lens

    def tokenize_conversation(self, conv_q, conv_a):
        """concatenate conversation and make sure the model is only trained to regress the answer"""

        to_regress_token_ids_list = []
        targets_list = []

        batch_size = len(conv_q)
        for batch_idx in range(batch_size):
            questions, answers = conv_q[batch_idx], conv_a[batch_idx]
            questions = [self.llama_tokenizer(q,
                                              return_tensors="pt",
                                              add_special_tokens=False).to(self.device) for q in questions[1:]]  # the first question is handled in the prompt wrap function, skip it
            answers = [self.llama_tokenizer(q,
                                              return_tensors="pt",
                                              add_special_tokens=False).to(self.device) for q in answers]
            cur_id = []
            cur_target = []
            for i in range(len(questions)):
                cur_id.append(answers[i].input_ids)
                cur_target.append(answers[i].input_ids)
                cur_id.append(questions[i].input_ids)
                cur_target.append(torch.ones_like(questions[i].input_ids) * -100)

            cur_id.append(answers[-1].input_ids)
            cur_target.append(answers[-1].input_ids)

            cur_id = torch.cat(cur_id, dim=1)
            cur_target = torch.cat(cur_target, dim=1)
            to_regress_token_ids_list.append(cur_id)
            targets_list.append(cur_target)

        max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
        to_regress_token_ids = torch.ones([batch_size, max_len],
                                          dtype=cur_id.dtype, device=self.device) * self.llama_tokenizer.pad_token_id
        targets = torch.ones([batch_size, max_len],
                                          dtype=cur_id.dtype, device=self.device) * -100
        for batch_idx in range(batch_size):
            cur_len = to_regress_token_ids_list[batch_idx].shape[1]
            to_regress_token_ids[batch_idx, :cur_len] = to_regress_token_ids_list[batch_idx][0, :max_len]
            targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]

        to_regress_token_attn = (to_regress_token_ids != self.llama_tokenizer.pad_token_id).to(torch.int)

        return to_regress_token_ids, to_regress_token_attn, targets

    def preparing_embedding(self, samples):
        ### prepare input tokens
        if 'image' in samples:
            img_embeds, img_atts = self.encode_img(samples["image"])
        else:
            img_embeds = img_atts = None

        if 'conv_q' in samples:
            # handeling conversation datasets
            conv_q, conv_a = samples['conv_q'], samples['conv_a']

            connect_sym = samples['connect_sym'][0]
            conv_q = [q.split(connect_sym)for q in conv_q]
            conv_a = [a.split(connect_sym) for a in conv_a]

            conv_q = [[self.prompt_template.format(item) for item in items] for items in conv_q]

            cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, [q[0] for q in conv_q])
            regress_token_ids, regress_atts, part_targets = self.tokenize_conversation(conv_q, conv_a)

        else:
            if "instruction_input" in samples:
                instruction = samples["instruction_input"]
            elif self.prompt_list:
                instruction = random.choice(self.prompt_list)
            else:
                instruction = None

            if self.chat_template:
                instruction = [self.prompt_template.format(instruct) for instruct in instruction]

            if 'length' in samples:
                # the input is a image train (like videos)
                bsz, pn, hs = img_embeds.shape
                img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs)
                cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
            else:
                cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)

            ### prepare target tokens
            self.llama_tokenizer.padding_side = "right"
            text = [t + self.end_sym for t in samples["answer"]]

            regress_tokens = self.llama_tokenizer(
                text,
                return_tensors="pt",
                padding="longest",
                truncation=True,
                max_length=self.max_txt_len,
                add_special_tokens=False
            ).to(self.device)

            regress_token_ids = regress_tokens.input_ids
            regress_atts = regress_tokens.attention_mask
            part_targets = regress_token_ids.masked_fill(
                regress_token_ids == self.llama_tokenizer.pad_token_id, -100
            )

        regress_embeds = self.embed_tokens(regress_token_ids)

        return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets

    def forward(self, samples, reduction='mean'):
        # prepare the embedding to condition and the embedding to regress
        cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
            self.preparing_embedding(samples)

        # concat the embedding to condition and the embedding to regress
        inputs_embeds, attention_mask, input_lens = \
            self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)

        # get bos token embedding
        bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.embed_tokens(bos)
        bos_atts = cond_atts[:, :1]

        # add bos token at the begining
        inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
        attention_mask = torch.cat([bos_atts, attention_mask], dim=1)

        # ensemble the final targets
        targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
                             dtype=torch.long).to(self.device).fill_(-100)

        for i, target in enumerate(part_targets):
            targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target  # plus 1 for bos

        with self.maybe_autocast():
            outputs = self.llama_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
                reduction=reduction
            )
        loss = outputs.loss

        return {"loss": loss}

    def embed_tokens(self, token_ids):
        if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model
            embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
        else:
            embeds = self.llama_model.base_model.embed_tokens(token_ids)
        return embeds


    @torch.no_grad()
    def generate(
        self,
        images,
        texts,
        num_beams=1,
        max_new_tokens=20,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1,
        length_penalty=1,
        temperature=1,
        do_sample=False,
        stop_words_ids=[2],
    ):
        '''
            function for generate test use
        '''

        stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
            stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])

        img_embeds, atts_img = self.encode_img(images.to(self.device))
        image_lists = [[image_emb[None]] for image_emb in img_embeds]

        batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]

        batch_size = len(batch_embs)
        max_len = max([emb.shape[1] for emb in batch_embs])
        emb_dim = batch_embs[0].shape[2]
        dtype = batch_embs[0].dtype
        device = batch_embs[0].device

        embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
        attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
        for i, emb in enumerate(batch_embs):
            emb_len = emb.shape[1]
            embs[i, -emb_len:] = emb[0]
            attn_mask[i, -emb_len:] = 1

        with self.maybe_autocast():
            outputs = self.llama_model.generate(
                inputs_embeds=embs,
                attention_mask=attn_mask,
                max_new_tokens=max_new_tokens,
                num_beams=num_beams,
                length_penalty=length_penalty,
                temperature=temperature,
                do_sample=do_sample,
                min_length=min_length,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                stopping_criteria=stopping_criteria,
            )

        answers = []
        for output_token in outputs:
            if output_token[0] == 0:
                output_token = output_token[1:]
            output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
            output_texts = output_texts.split('</s>')[0]  # remove the stop sign </s>
            output_texts = output_texts.replace("<s>", "")
            output_texts = output_texts.split(r'[/INST]')[-1].strip()
            answers.append(output_texts)

        return answers

    @torch.no_grad()
    def multi_select(self, images, texts, answers, num_cand=None):
        all_losses = []
        for answer in answers:
            choice_samples = {
                'image': images,
                'instruction_input': texts,
                'answer': answer
            }
            loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
            all_losses.append(loss)
            torch.cuda.empty_cache()
        all_losses = torch.cat(all_losses, dim=-1)
        if num_cand is not None:
            for i in range(all_losses.shape[0]):
                all_losses[i, num_cand[i]:] = 9999
        output_class_ranks = torch.argsort(all_losses, dim=-1)
        return output_class_ranks.tolist()