File size: 20,730 Bytes
4a40efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Dict, Optional, Union, Tuple, List

import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from models.blocks import JointTransformerBlock
# from diffusers.models.attention_processor import Attention, AttentionProcessor
from models.attention import Attention, AttentionProcessor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput

from einops import rearrange
from torch.distributed._tensor import Shard, Replicate
from torch.distributed.tensor.parallel import (
    parallelize_module,
    PrepareModuleOutput
)

#from models.layers import ParallelTimestepEmbedder, TransformerBlock, ParallelFinalLayer, Identity


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    """
    The Transformer model introduced in Stable Diffusion 3.

    Reference: https://arxiv.org/abs/2403.03206

    Parameters:
        sample_size (`int`): The width of the latent images. This is fixed during training since
            it is used to learn a number of position embeddings.
        patch_size (`int`): Patch size to turn the input data into small patches.
        in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
        num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
        pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
        out_channels (`int`, defaults to 16): Number of output channels.

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: int = 128,
        patch_size: int = 2,
        in_channels: int = 16,
        num_layers: int = 18,
        attention_head_dim: int = 64,
        num_attention_heads: int = 18,
        joint_attention_dim: int = 4096,
        caption_projection_dim: int = 1152,
        pooled_projection_dim: int = 2048,
        out_channels: int = 16,
        pos_embed_max_size: int = 96,
        tp_size: int = 1,
        rope_scaling_factor: float = 1.,
    ):
        super().__init__()
        default_out_channels = in_channels
        self.out_channels = out_channels if out_channels is not None else default_out_channels
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim

        self.pos_embed = PatchEmbed(
            height=self.config.sample_size,
            width=self.config.sample_size,
            patch_size=self.config.patch_size,
            in_channels=self.config.in_channels,
            embed_dim=self.inner_dim,
            pos_embed_max_size=pos_embed_max_size,  # hard-code for now.
        )
        self.time_text_embed = CombinedTimestepTextProjEmbeddings(
            embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
        )
        self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
        # `attention_head_dim` is doubled to account for the mixing.
        # It needs to crafted when we get the actual checkpoints.
        self.transformer_blocks = nn.ModuleList(
            [
                JointTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.inner_dim,
                    context_pre_only=i == num_layers - 1,
                    tp_size = tp_size
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)

        self.gradient_checkpointing = False

        # Video param
        # self.scatter_dim_zero = Identity()
        self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis(
            self.inner_dim // self.config.num_attention_heads, 1000000, theta=1e6, rope_scaling_factor=rope_scaling_factor  # todo max pos embeds
        )

        #self.vid_token = nn.Parameter(torch.empty(self.inner_dim))

    @staticmethod
    def tp_parallelize(model, tp_mesh):
        for layer_id, transformer_block in enumerate(model.transformer_blocks):
            layer_tp_plan = {
                # Attention layer
                "attn.gather_seq_scatter_hidden": PrepareModuleOutput(
                    output_layouts=Replicate(),
                    desired_output_layouts=Shard(-2)
                ),
                "attn.gather_hidden_scatter_seq": PrepareModuleOutput(
                    output_layouts=Shard(-2),
                    desired_output_layouts=Replicate(),
                )
            }
            parallelize_module(
                module=transformer_block,
                device_mesh=tp_mesh,
                parallelize_plan=layer_tp_plan
            )
        return model

    @staticmethod
    def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0):
        freqs = 1.0 / (theta ** (
                torch.arange(0, dim, 2)[: (dim // 2)].float() / dim
        ))
        t = torch.arange(end, device=freqs.device, dtype=torch.float)
        t = t / rope_scaling_factor
        freqs = torch.outer(t, freqs).float()  
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
        return freqs_cis
    
    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def patchify_and_embed(self, x):
        pH = pW = self.patch_size
        B, F, C, H, W = x.size()
        x = rearrange(x, "b f c h w -> (b f) c h w")
        x = self.pos_embed(x) # [B L D]
        # x = torch.cat([
        #     x,
        #     self.vid_token.view(1, 1, -1).expand(B*F, 1, -1),
        # ], dim=1) 

        return x, F, [(H, W)] * B
    
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        pooled_projections: torch.FloatTensor = None,
        timestep: torch.LongTensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`VchitectXLTransformerModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        # if USE_PEFT_BACKEND:
        #     # weight the lora layers by setting `lora_scale` for each PEFT layer
        #     scale_lora_layers(self, lora_scale)
        # else:
        #     logger.warning(
        #         "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
        #     )

        height, width = hidden_states.shape[-2:]

        batch_size = hidden_states.shape[0]
        hidden_states, F_num, _ = self.patchify_and_embed(hidden_states)  # takes care of adding positional embeddings too.
        full_seq = batch_size * F_num

        self.freqs_cis = self.freqs_cis.to(hidden_states.device)
        freqs_cis = self.freqs_cis
        # seq_length = hidden_states.size(1)
        # freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num]
        temb = self.time_text_embed(timestep, pooled_projections)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        # for block in self.transformer_blocks:
        #     if self.training and self.gradient_checkpointing:

        #         def create_custom_forward(module, return_dict=None):
        #             def custom_forward(*inputs):
        #                 if return_dict is not None:
        #                     return module(*inputs, return_dict=return_dict)
        #                 else:
        #                     return module(*inputs)

        #             return custom_forward

        #         ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
        #         hidden_states = torch.utils.checkpoint.checkpoint(
        #             create_custom_forward(block),
        #             hidden_states,
        #             encoder_hidden_states,
        #             temb,
        #             **ckpt_kwargs,
        #         )

        #     else:
        #         encoder_hidden_states, hidden_states = block(
        #             hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
        #         )

        for block_idx, block in enumerate(self.transformer_blocks):
            encoder_hidden_states, hidden_states = block(
                hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb.repeat(F_num,1), freqs_cis=freqs_cis, full_seqlen=full_seq, Frame=F_num
            )
            
        hidden_states = self.norm_out(hidden_states, temb)
        hidden_states = self.proj_out(hidden_states)

        # unpatchify
        # hidden_states = hidden_states[:, :-1] #Drop the video token

        # unpatchify
        patch_size = self.config.patch_size
        height = height // patch_size
        width = width // patch_size

        hidden_states = hidden_states.reshape(
            shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
        )
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
        )

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

    def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
        return list(self.transformer_blocks)
    
    @classmethod
    def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1):

        import os
        import json

        if subfolder is not None:
            pretrained_model_path = os.path.join(pretrained_model_path, subfolder)

        config_file = os.path.join(pretrained_model_path, 'config.json')

        with open(config_file, "r") as f:
            config = json.load(f)

        config["tp_size"] = tp_size
        from diffusers.utils import WEIGHTS_NAME
        from safetensors.torch import load_file,load_model
        model = cls.from_config(config)
        # model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
    
        model_files = [
            os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
            os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
        ]

        model_file = None

        for fp in model_files:
            if os.path.exists(fp):
                model_file = fp

        if not model_file:
            raise RuntimeError(f"{model_file} does not exist")

        if not os.path.isfile(model_file):
            raise RuntimeError(f"{model_file} does not exist")
        

        state_dict = load_file(model_file,device="cpu")
        m, u = model.load_state_dict(state_dict, strict=False)
        model = model.to(torch_dtype)

        params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
        total_params = [p.numel() for n, p in model.named_parameters()]

        if logger is not None:
            logger.info(f"model_file: {model_file}")
            logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
            logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
            logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M")
        
        return model