Spaces:
Running
on
Zero
Running
on
Zero
WeichenFan
commited on
Commit
·
4a40efc
1
Parent(s):
0962cb3
init
Browse files- README.md +53 -6
- app.py +248 -0
- inference.py +59 -0
- models/VchitectXL.py +479 -0
- models/__init__.py +0 -0
- models/__pycache__/VchitectXL.cpython-310.pyc +0 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/__pycache__/attention.cpython-310.pyc +0 -0
- models/__pycache__/autoencoder_kl_temporal_decoder.cpython-310.pyc +0 -0
- models/__pycache__/blocks.cpython-310.pyc +0 -0
- models/__pycache__/layers.cpython-310.pyc +0 -0
- models/__pycache__/modeling_t5.cpython-310.pyc +0 -0
- models/__pycache__/models.cpython-310.pyc +0 -0
- models/__pycache__/motion_module.cpython-310.pyc +0 -0
- models/__pycache__/pipeline.cpython-310.pyc +0 -0
- models/__pycache__/scheduling_ddim_cogvideox.cpython-310.pyc +0 -0
- models/__pycache__/sd3_attention.cpython-310.pyc +0 -0
- models/__pycache__/sd3_models.cpython-310.pyc +0 -0
- models/__pycache__/sd3_sparse.cpython-310.pyc +0 -0
- models/__pycache__/sd3_sparse_ae_temporal_pipeline.cpython-310.pyc +0 -0
- models/__pycache__/sd3_sparse_i2v_pipeline.cpython-310.pyc +0 -0
- models/__pycache__/sd3_sparse_init_pipeline.cpython-310.pyc +0 -0
- models/__pycache__/sd3_sparse_pipeline.cpython-310.pyc +0 -0
- models/__pycache__/sparse_attention.cpython-310.pyc +0 -0
- models/__pycache__/utils.cpython-310.pyc +0 -0
- models/attention.py +0 -0
- models/blocks.py +793 -0
- models/modeling_t5.py +0 -0
- models/pipeline.py +963 -0
- models/utils.py +32 -0
- op_replace.py +38 -0
- requirements.txt +12 -0
- utils.py +225 -0
README.md
CHANGED
@@ -1,13 +1,60 @@
|
|
1 |
---
|
2 |
title: Vchitect 2.0
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Vchitect 2.0
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
+
# Vchitect-XL
|
13 |
|
14 |
+
## Installation
|
15 |
+
|
16 |
+
### 1. Create a conda environment and install PyTorch
|
17 |
+
|
18 |
+
Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version).
|
19 |
+
|
20 |
+
```bash
|
21 |
+
conda create -n VchitectXL -y
|
22 |
+
conda activate VchitectXL
|
23 |
+
conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
|
24 |
+
```
|
25 |
+
|
26 |
+
### 2. Install dependencies
|
27 |
+
|
28 |
+
```bash
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
|
32 |
+
### 3. Install ``flash-attn``
|
33 |
+
|
34 |
+
```bash
|
35 |
+
pip install flash-attn --no-build-isolation
|
36 |
+
```
|
37 |
+
|
38 |
+
### 4. Install [nvidia apex](https://github.com/nvidia/apex)
|
39 |
+
|
40 |
+
```bash
|
41 |
+
pip install ninja
|
42 |
+
git clone https://github.com/NVIDIA/apex
|
43 |
+
cd apex
|
44 |
+
# if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key...
|
45 |
+
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./
|
46 |
+
# otherwise
|
47 |
+
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
|
48 |
+
```
|
49 |
+
|
50 |
+
## Inference
|
51 |
+
|
52 |
+
~~~bash
|
53 |
+
#easy infer
|
54 |
+
test_file=$1
|
55 |
+
save_dir=$2
|
56 |
+
ckpt_path=$3
|
57 |
+
|
58 |
+
python inference.py --test_file "${test_file}" --save_dir "${save_dir}" --ckpt_path "${ckpt_path}"
|
59 |
+
|
60 |
+
~~~
|
app.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import threading
|
3 |
+
import time
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
# from diffusers import CogVideoXPipeline
|
8 |
+
from models.pipeline import VchitectXLPipeline
|
9 |
+
from diffusers.utils import export_to_video
|
10 |
+
from datetime import datetime, timedelta
|
11 |
+
# from openai import OpenAI
|
12 |
+
import spaces
|
13 |
+
import moviepy.editor as mp
|
14 |
+
|
15 |
+
import os
|
16 |
+
from huggingface_hub import login
|
17 |
+
login(token=os.getenv('HF_TOKEN'))
|
18 |
+
|
19 |
+
dtype = torch.float16
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
pipe = VchitectXLPipeline("Vchitect-XL/Vchitect-XL-2B",device)
|
22 |
+
#VchitectXLPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=dtype).to(device)
|
23 |
+
#
|
24 |
+
os.makedirs("./output", exist_ok=True)
|
25 |
+
os.makedirs("./gradio_tmp", exist_ok=True)
|
26 |
+
|
27 |
+
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
|
28 |
+
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
|
29 |
+
There are a few rules to follow:
|
30 |
+
You will only ever output a single video description per user request.
|
31 |
+
When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
|
32 |
+
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
|
33 |
+
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
# def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
38 |
+
# if not os.environ.get("OPENAI_API_KEY"):
|
39 |
+
# return prompt
|
40 |
+
# client = OpenAI()
|
41 |
+
# text = prompt.strip()
|
42 |
+
|
43 |
+
# for i in range(retry_times):
|
44 |
+
# response = client.chat.completions.create(
|
45 |
+
# messages=[
|
46 |
+
# {"role": "system", "content": sys_prompt},
|
47 |
+
# {
|
48 |
+
# "role": "user",
|
49 |
+
# "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"',
|
50 |
+
# },
|
51 |
+
# {
|
52 |
+
# "role": "assistant",
|
53 |
+
# "content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
|
54 |
+
# },
|
55 |
+
# {
|
56 |
+
# "role": "user",
|
57 |
+
# "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"',
|
58 |
+
# },
|
59 |
+
# {
|
60 |
+
# "role": "assistant",
|
61 |
+
# "content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
|
62 |
+
# },
|
63 |
+
# {
|
64 |
+
# "role": "user",
|
65 |
+
# "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
|
66 |
+
# },
|
67 |
+
# {
|
68 |
+
# "role": "assistant",
|
69 |
+
# "content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
|
70 |
+
# },
|
71 |
+
# {
|
72 |
+
# "role": "user",
|
73 |
+
# "content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
|
74 |
+
# },
|
75 |
+
# ],
|
76 |
+
# model="glm-4-0520",
|
77 |
+
# temperature=0.01,
|
78 |
+
# top_p=0.7,
|
79 |
+
# stream=False,
|
80 |
+
# max_tokens=250,
|
81 |
+
# )
|
82 |
+
# if response.choices:
|
83 |
+
# return response.choices[0].message.content
|
84 |
+
# return prompt
|
85 |
+
|
86 |
+
@spaces.GPU(duration=120)
|
87 |
+
def infer(prompt: str, num_inference_steps: int, guidance_scale: float, progress=gr.Progress(track_tqdm=True)):
|
88 |
+
torch.cuda.empty_cache()
|
89 |
+
# video = pipe(
|
90 |
+
# prompt=prompt,
|
91 |
+
# num_videos_per_prompt=1,
|
92 |
+
# num_inference_steps=num_inference_steps,
|
93 |
+
# num_frames=49,
|
94 |
+
# guidance_scale=guidance_scale,
|
95 |
+
# ).frames[0]
|
96 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
97 |
+
video = pipe(
|
98 |
+
prompt,
|
99 |
+
negative_prompt="",
|
100 |
+
num_inference_steps=num_inference_steps,
|
101 |
+
guidance_scale=guidance_scale,
|
102 |
+
width=432,
|
103 |
+
height=240, #480x288 624x352 432x240 768x432
|
104 |
+
frames=16
|
105 |
+
)
|
106 |
+
|
107 |
+
return video
|
108 |
+
|
109 |
+
|
110 |
+
def save_video(tensor):
|
111 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
112 |
+
video_path = f"./output/{timestamp}.mp4"
|
113 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
114 |
+
export_to_video(tensor, video_path)
|
115 |
+
return video_path
|
116 |
+
|
117 |
+
|
118 |
+
def convert_to_gif(video_path):
|
119 |
+
clip = mp.VideoFileClip(video_path)
|
120 |
+
clip = clip.set_fps(8)
|
121 |
+
clip = clip.resize(height=240)
|
122 |
+
gif_path = video_path.replace(".mp4", ".gif")
|
123 |
+
clip.write_gif(gif_path, fps=8)
|
124 |
+
return gif_path
|
125 |
+
|
126 |
+
|
127 |
+
def delete_old_files():
|
128 |
+
while True:
|
129 |
+
now = datetime.now()
|
130 |
+
cutoff = now - timedelta(minutes=10)
|
131 |
+
directories = ["./output", "./gradio_tmp"]
|
132 |
+
|
133 |
+
for directory in directories:
|
134 |
+
for filename in os.listdir(directory):
|
135 |
+
file_path = os.path.join(directory, filename)
|
136 |
+
if os.path.isfile(file_path):
|
137 |
+
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
|
138 |
+
if file_mtime < cutoff:
|
139 |
+
os.remove(file_path)
|
140 |
+
time.sleep(600)
|
141 |
+
|
142 |
+
|
143 |
+
threading.Thread(target=delete_old_files, daemon=True).start()
|
144 |
+
|
145 |
+
with gr.Blocks() as demo:
|
146 |
+
gr.Markdown("""
|
147 |
+
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
|
148 |
+
Vchitect-XL 2B Huggingface Space🤗
|
149 |
+
</div>
|
150 |
+
<div style="text-align: center;">
|
151 |
+
<a href="https://huggingface.co/Vchitect-XL/Vchitect-XL-2B">🤗 2B Model Hub</a> |
|
152 |
+
<a href="https://vchitect.intern-ai.org.cn/">🌐 Website</a> |
|
153 |
+
</div>
|
154 |
+
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
|
155 |
+
⚠️ This demo is for academic research and experiential use only.
|
156 |
+
Users should strictly adhere to local laws and ethics.
|
157 |
+
</div>
|
158 |
+
""")
|
159 |
+
with gr.Row():
|
160 |
+
with gr.Column():
|
161 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=5)
|
162 |
+
|
163 |
+
# with gr.Row():
|
164 |
+
# gr.Markdown(
|
165 |
+
# "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one.")
|
166 |
+
# enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
|
167 |
+
|
168 |
+
with gr.Column():
|
169 |
+
# gr.Markdown("**Optional Parameters** (default values are recommended)<br>"
|
170 |
+
# "Increasing the number of inference steps will produce more detailed videos, but it will slow down the process.<br>"
|
171 |
+
# "50 steps are recommended for most cases.<br>"
|
172 |
+
# "For the 5B model, 50 steps will take approximately 350 seconds.")
|
173 |
+
with gr.Row():
|
174 |
+
num_inference_steps = gr.Number(label="Inference Steps", value=100)
|
175 |
+
guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
|
176 |
+
generate_button = gr.Button("🎬 Generate Video")
|
177 |
+
|
178 |
+
with gr.Column():
|
179 |
+
video_output = gr.Video(label="CogVideoX Generate Video", width=768, height=432)
|
180 |
+
with gr.Row():
|
181 |
+
download_video_button = gr.File(label="📥 Download Video", visible=False)
|
182 |
+
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
|
183 |
+
|
184 |
+
# gr.Markdown("""
|
185 |
+
# <table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
|
186 |
+
# <div style="text-align: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;">
|
187 |
+
# Demo Videos with 50 Inference Steps and 6.0 Guidance Scale.
|
188 |
+
# </div>
|
189 |
+
# <tr>
|
190 |
+
# <td style="width: 25%; vertical-align: top; font-size: 0.8em;">
|
191 |
+
# <p>A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</p>
|
192 |
+
# </td>
|
193 |
+
# <td style="width: 25%; vertical-align: top;">
|
194 |
+
# <video src="https://github.com/user-attachments/assets/ea3af39a-3160-4999-90ec-2f7863c5b0e9" width="100%" controls autoplay></video>
|
195 |
+
# </td>
|
196 |
+
# <td style="width: 25%; vertical-align: top; font-size: 0.8em;">
|
197 |
+
# <p>The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from its tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</p>
|
198 |
+
# </td>
|
199 |
+
# <td style="width: 25%; vertical-align: top;">
|
200 |
+
# <video src="https://github.com/user-attachments/assets/9de41efd-d4d1-4095-aeda-246dd834e91d" width="100%" controls autoplay></video>
|
201 |
+
# </td>
|
202 |
+
# </tr>
|
203 |
+
# <tr>
|
204 |
+
# <td style="width: 25%; vertical-align: top; font-size: 0.8em;">
|
205 |
+
# <p>A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</p>
|
206 |
+
# </td>
|
207 |
+
# <td style="width: 25%; vertical-align: top;">
|
208 |
+
# <video src="https://github.com/user-attachments/assets/941d6661-6a8d-4a1b-b912-59606f0b2841" width="100%" controls autoplay></video>
|
209 |
+
# </td>
|
210 |
+
# <td style="width: 25%; vertical-align: top; font-size: 0.8em;">
|
211 |
+
# <p>In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</p>
|
212 |
+
# </td>
|
213 |
+
# <td style="width: 25%; vertical-align: top;">
|
214 |
+
# <video src="https://github.com/user-attachments/assets/938529c4-91ae-4f60-b96b-3c3947fa63cb" width="100%" controls autoplay></video>
|
215 |
+
# </td>
|
216 |
+
# </tr>
|
217 |
+
# </table>
|
218 |
+
# """)
|
219 |
+
|
220 |
+
|
221 |
+
def generate(prompt, num_inference_steps, guidance_scale, model_choice, progress=gr.Progress(track_tqdm=True)):
|
222 |
+
tensor = infer(prompt, num_inference_steps, guidance_scale, progress=progress)
|
223 |
+
video_path = save_video(tensor)
|
224 |
+
video_update = gr.update(visible=True, value=video_path)
|
225 |
+
gif_path = convert_to_gif(video_path)
|
226 |
+
gif_update = gr.update(visible=True, value=gif_path)
|
227 |
+
|
228 |
+
return video_path, video_update, gif_update
|
229 |
+
|
230 |
+
|
231 |
+
# def enhance_prompt_func(prompt):
|
232 |
+
# return convert_prompt(prompt, retry_times=1)
|
233 |
+
|
234 |
+
|
235 |
+
generate_button.click(
|
236 |
+
generate,
|
237 |
+
inputs=[prompt, num_inference_steps, guidance_scale],
|
238 |
+
outputs=[video_output, download_video_button, download_gif_button]
|
239 |
+
)
|
240 |
+
|
241 |
+
# enhance_button.click(
|
242 |
+
# enhance_prompt_func,
|
243 |
+
# inputs=[prompt],
|
244 |
+
# outputs=[prompt]
|
245 |
+
# )
|
246 |
+
|
247 |
+
if __name__ == "__main__":
|
248 |
+
demo.launch()
|
inference.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from models.pipeline import VchitectXLPipeline
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
|
7 |
+
def set_seed(seed):
|
8 |
+
random.seed(seed)
|
9 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
10 |
+
np.random.seed(seed)
|
11 |
+
torch.manual_seed(seed)
|
12 |
+
torch.cuda.manual_seed(seed)
|
13 |
+
|
14 |
+
def infer(args):
|
15 |
+
pipe = VchitectXLPipeline(args.ckpt_path)
|
16 |
+
idx = 0
|
17 |
+
|
18 |
+
with open(args.test_file,'r') as f:
|
19 |
+
for lines in f.readlines():
|
20 |
+
for seed in range(5):
|
21 |
+
set_seed(seed)
|
22 |
+
prompt = lines.strip('\n')
|
23 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
24 |
+
video = pipe(
|
25 |
+
prompt,
|
26 |
+
negative_prompt="",
|
27 |
+
num_inference_steps=50,
|
28 |
+
guidance_scale=7.5,
|
29 |
+
width=768,
|
30 |
+
height=432, #480x288 624x352 432x240 768x432
|
31 |
+
frames=40
|
32 |
+
)
|
33 |
+
|
34 |
+
images = video
|
35 |
+
|
36 |
+
from utils import save_as_mp4
|
37 |
+
import sys,os
|
38 |
+
duration = 1000 / 8
|
39 |
+
|
40 |
+
save_dir = args.save_dir
|
41 |
+
os.makedirs(save_dir,exist_ok=True)
|
42 |
+
|
43 |
+
idx += 1
|
44 |
+
|
45 |
+
save_as_mp4(images, os.path.join(save_dir, f"sample_{idx}_seed{seed}")+'.mp4', duration=duration)
|
46 |
+
|
47 |
+
import sys,os
|
48 |
+
import argparse
|
49 |
+
|
50 |
+
def main():
|
51 |
+
parser = argparse.ArgumentParser()
|
52 |
+
parser.add_argument("--test_file", type=str)
|
53 |
+
parser.add_argument("--save_dir", type=str)
|
54 |
+
parser.add_argument("--ckpt_path", type=str)
|
55 |
+
args = parser.parse_known_args()[0]
|
56 |
+
infer(args)
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|
models/VchitectXL.py
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Dict, Optional, Union, Tuple, List
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
23 |
+
from models.blocks import JointTransformerBlock
|
24 |
+
# from diffusers.models.attention_processor import Attention, AttentionProcessor
|
25 |
+
from models.attention import Attention, AttentionProcessor
|
26 |
+
from diffusers.models.modeling_utils import ModelMixin
|
27 |
+
from diffusers.models.normalization import AdaLayerNormContinuous
|
28 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
29 |
+
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
30 |
+
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput
|
31 |
+
|
32 |
+
from einops import rearrange
|
33 |
+
from torch.distributed._tensor import Shard, Replicate
|
34 |
+
from torch.distributed.tensor.parallel import (
|
35 |
+
parallelize_module,
|
36 |
+
PrepareModuleOutput
|
37 |
+
)
|
38 |
+
|
39 |
+
#from models.layers import ParallelTimestepEmbedder, TransformerBlock, ParallelFinalLayer, Identity
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43 |
+
|
44 |
+
|
45 |
+
class VchitectXLTransformerModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
46 |
+
"""
|
47 |
+
The Transformer model introduced in Stable Diffusion 3.
|
48 |
+
|
49 |
+
Reference: https://arxiv.org/abs/2403.03206
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
53 |
+
it is used to learn a number of position embeddings.
|
54 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
55 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
56 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
57 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
58 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
59 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
60 |
+
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
61 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
62 |
+
out_channels (`int`, defaults to 16): Number of output channels.
|
63 |
+
|
64 |
+
"""
|
65 |
+
|
66 |
+
_supports_gradient_checkpointing = True
|
67 |
+
|
68 |
+
@register_to_config
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
sample_size: int = 128,
|
72 |
+
patch_size: int = 2,
|
73 |
+
in_channels: int = 16,
|
74 |
+
num_layers: int = 18,
|
75 |
+
attention_head_dim: int = 64,
|
76 |
+
num_attention_heads: int = 18,
|
77 |
+
joint_attention_dim: int = 4096,
|
78 |
+
caption_projection_dim: int = 1152,
|
79 |
+
pooled_projection_dim: int = 2048,
|
80 |
+
out_channels: int = 16,
|
81 |
+
pos_embed_max_size: int = 96,
|
82 |
+
tp_size: int = 1,
|
83 |
+
rope_scaling_factor: float = 1.,
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
default_out_channels = in_channels
|
87 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
88 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
89 |
+
|
90 |
+
self.pos_embed = PatchEmbed(
|
91 |
+
height=self.config.sample_size,
|
92 |
+
width=self.config.sample_size,
|
93 |
+
patch_size=self.config.patch_size,
|
94 |
+
in_channels=self.config.in_channels,
|
95 |
+
embed_dim=self.inner_dim,
|
96 |
+
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
97 |
+
)
|
98 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
99 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
100 |
+
)
|
101 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
102 |
+
# `attention_head_dim` is doubled to account for the mixing.
|
103 |
+
# It needs to crafted when we get the actual checkpoints.
|
104 |
+
self.transformer_blocks = nn.ModuleList(
|
105 |
+
[
|
106 |
+
JointTransformerBlock(
|
107 |
+
dim=self.inner_dim,
|
108 |
+
num_attention_heads=self.config.num_attention_heads,
|
109 |
+
attention_head_dim=self.inner_dim,
|
110 |
+
context_pre_only=i == num_layers - 1,
|
111 |
+
tp_size = tp_size
|
112 |
+
)
|
113 |
+
for i in range(self.config.num_layers)
|
114 |
+
]
|
115 |
+
)
|
116 |
+
|
117 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
118 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
119 |
+
|
120 |
+
self.gradient_checkpointing = False
|
121 |
+
|
122 |
+
# Video param
|
123 |
+
# self.scatter_dim_zero = Identity()
|
124 |
+
self.freqs_cis = VchitectXLTransformerModel.precompute_freqs_cis(
|
125 |
+
self.inner_dim // self.config.num_attention_heads, 1000000, theta=1e6, rope_scaling_factor=rope_scaling_factor # todo max pos embeds
|
126 |
+
)
|
127 |
+
|
128 |
+
#self.vid_token = nn.Parameter(torch.empty(self.inner_dim))
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def tp_parallelize(model, tp_mesh):
|
132 |
+
for layer_id, transformer_block in enumerate(model.transformer_blocks):
|
133 |
+
layer_tp_plan = {
|
134 |
+
# Attention layer
|
135 |
+
"attn.gather_seq_scatter_hidden": PrepareModuleOutput(
|
136 |
+
output_layouts=Replicate(),
|
137 |
+
desired_output_layouts=Shard(-2)
|
138 |
+
),
|
139 |
+
"attn.gather_hidden_scatter_seq": PrepareModuleOutput(
|
140 |
+
output_layouts=Shard(-2),
|
141 |
+
desired_output_layouts=Replicate(),
|
142 |
+
)
|
143 |
+
}
|
144 |
+
parallelize_module(
|
145 |
+
module=transformer_block,
|
146 |
+
device_mesh=tp_mesh,
|
147 |
+
parallelize_plan=layer_tp_plan
|
148 |
+
)
|
149 |
+
return model
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, rope_scaling_factor: float = 1.0):
|
153 |
+
freqs = 1.0 / (theta ** (
|
154 |
+
torch.arange(0, dim, 2)[: (dim // 2)].float() / dim
|
155 |
+
))
|
156 |
+
t = torch.arange(end, device=freqs.device, dtype=torch.float)
|
157 |
+
t = t / rope_scaling_factor
|
158 |
+
freqs = torch.outer(t, freqs).float()
|
159 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
160 |
+
return freqs_cis
|
161 |
+
|
162 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
163 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
164 |
+
"""
|
165 |
+
Sets the attention processor to use [feed forward
|
166 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
167 |
+
|
168 |
+
Parameters:
|
169 |
+
chunk_size (`int`, *optional*):
|
170 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
171 |
+
over each tensor of dim=`dim`.
|
172 |
+
dim (`int`, *optional*, defaults to `0`):
|
173 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
174 |
+
or dim=1 (sequence length).
|
175 |
+
"""
|
176 |
+
if dim not in [0, 1]:
|
177 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
178 |
+
|
179 |
+
# By default chunk size is 1
|
180 |
+
chunk_size = chunk_size or 1
|
181 |
+
|
182 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
183 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
184 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
185 |
+
|
186 |
+
for child in module.children():
|
187 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
188 |
+
|
189 |
+
for module in self.children():
|
190 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
191 |
+
|
192 |
+
@property
|
193 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
194 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
195 |
+
r"""
|
196 |
+
Returns:
|
197 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
198 |
+
indexed by its weight name.
|
199 |
+
"""
|
200 |
+
# set recursively
|
201 |
+
processors = {}
|
202 |
+
|
203 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
204 |
+
if hasattr(module, "get_processor"):
|
205 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
206 |
+
|
207 |
+
for sub_name, child in module.named_children():
|
208 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
209 |
+
|
210 |
+
return processors
|
211 |
+
|
212 |
+
for name, module in self.named_children():
|
213 |
+
fn_recursive_add_processors(name, module, processors)
|
214 |
+
|
215 |
+
return processors
|
216 |
+
|
217 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
218 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
219 |
+
r"""
|
220 |
+
Sets the attention processor to use to compute attention.
|
221 |
+
|
222 |
+
Parameters:
|
223 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
224 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
225 |
+
for **all** `Attention` layers.
|
226 |
+
|
227 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
228 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
229 |
+
|
230 |
+
"""
|
231 |
+
count = len(self.attn_processors.keys())
|
232 |
+
|
233 |
+
if isinstance(processor, dict) and len(processor) != count:
|
234 |
+
raise ValueError(
|
235 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
236 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
237 |
+
)
|
238 |
+
|
239 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
240 |
+
if hasattr(module, "set_processor"):
|
241 |
+
if not isinstance(processor, dict):
|
242 |
+
module.set_processor(processor)
|
243 |
+
else:
|
244 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
245 |
+
|
246 |
+
for sub_name, child in module.named_children():
|
247 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
248 |
+
|
249 |
+
for name, module in self.named_children():
|
250 |
+
fn_recursive_attn_processor(name, module, processor)
|
251 |
+
|
252 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
253 |
+
def fuse_qkv_projections(self):
|
254 |
+
"""
|
255 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
256 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
257 |
+
|
258 |
+
<Tip warning={true}>
|
259 |
+
|
260 |
+
This API is 🧪 experimental.
|
261 |
+
|
262 |
+
</Tip>
|
263 |
+
"""
|
264 |
+
self.original_attn_processors = None
|
265 |
+
|
266 |
+
for _, attn_processor in self.attn_processors.items():
|
267 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
268 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
269 |
+
|
270 |
+
self.original_attn_processors = self.attn_processors
|
271 |
+
|
272 |
+
for module in self.modules():
|
273 |
+
if isinstance(module, Attention):
|
274 |
+
module.fuse_projections(fuse=True)
|
275 |
+
|
276 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
277 |
+
def unfuse_qkv_projections(self):
|
278 |
+
"""Disables the fused QKV projection if enabled.
|
279 |
+
|
280 |
+
<Tip warning={true}>
|
281 |
+
|
282 |
+
This API is 🧪 experimental.
|
283 |
+
|
284 |
+
</Tip>
|
285 |
+
|
286 |
+
"""
|
287 |
+
if self.original_attn_processors is not None:
|
288 |
+
self.set_attn_processor(self.original_attn_processors)
|
289 |
+
|
290 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
291 |
+
if hasattr(module, "gradient_checkpointing"):
|
292 |
+
module.gradient_checkpointing = value
|
293 |
+
|
294 |
+
def patchify_and_embed(self, x):
|
295 |
+
pH = pW = self.patch_size
|
296 |
+
B, F, C, H, W = x.size()
|
297 |
+
x = rearrange(x, "b f c h w -> (b f) c h w")
|
298 |
+
x = self.pos_embed(x) # [B L D]
|
299 |
+
# x = torch.cat([
|
300 |
+
# x,
|
301 |
+
# self.vid_token.view(1, 1, -1).expand(B*F, 1, -1),
|
302 |
+
# ], dim=1)
|
303 |
+
|
304 |
+
return x, F, [(H, W)] * B
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.FloatTensor,
|
309 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
310 |
+
pooled_projections: torch.FloatTensor = None,
|
311 |
+
timestep: torch.LongTensor = None,
|
312 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
313 |
+
return_dict: bool = True,
|
314 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
315 |
+
"""
|
316 |
+
The [`VchitectXLTransformerModel`] forward method.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
320 |
+
Input `hidden_states`.
|
321 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
322 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
323 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
324 |
+
from the embeddings of input conditions.
|
325 |
+
timestep ( `torch.LongTensor`):
|
326 |
+
Used to indicate denoising step.
|
327 |
+
joint_attention_kwargs (`dict`, *optional*):
|
328 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
329 |
+
`self.processor` in
|
330 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
331 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
332 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
333 |
+
tuple.
|
334 |
+
|
335 |
+
Returns:
|
336 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
337 |
+
`tuple` where the first element is the sample tensor.
|
338 |
+
"""
|
339 |
+
if joint_attention_kwargs is not None:
|
340 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
341 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
342 |
+
else:
|
343 |
+
lora_scale = 1.0
|
344 |
+
|
345 |
+
# if USE_PEFT_BACKEND:
|
346 |
+
# # weight the lora layers by setting `lora_scale` for each PEFT layer
|
347 |
+
# scale_lora_layers(self, lora_scale)
|
348 |
+
# else:
|
349 |
+
# logger.warning(
|
350 |
+
# "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
351 |
+
# )
|
352 |
+
|
353 |
+
height, width = hidden_states.shape[-2:]
|
354 |
+
|
355 |
+
batch_size = hidden_states.shape[0]
|
356 |
+
hidden_states, F_num, _ = self.patchify_and_embed(hidden_states) # takes care of adding positional embeddings too.
|
357 |
+
full_seq = batch_size * F_num
|
358 |
+
|
359 |
+
self.freqs_cis = self.freqs_cis.to(hidden_states.device)
|
360 |
+
freqs_cis = self.freqs_cis
|
361 |
+
# seq_length = hidden_states.size(1)
|
362 |
+
# freqs_cis = self.freqs_cis[:hidden_states.size(1)*F_num]
|
363 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
364 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
365 |
+
|
366 |
+
# for block in self.transformer_blocks:
|
367 |
+
# if self.training and self.gradient_checkpointing:
|
368 |
+
|
369 |
+
# def create_custom_forward(module, return_dict=None):
|
370 |
+
# def custom_forward(*inputs):
|
371 |
+
# if return_dict is not None:
|
372 |
+
# return module(*inputs, return_dict=return_dict)
|
373 |
+
# else:
|
374 |
+
# return module(*inputs)
|
375 |
+
|
376 |
+
# return custom_forward
|
377 |
+
|
378 |
+
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
379 |
+
# hidden_states = torch.utils.checkpoint.checkpoint(
|
380 |
+
# create_custom_forward(block),
|
381 |
+
# hidden_states,
|
382 |
+
# encoder_hidden_states,
|
383 |
+
# temb,
|
384 |
+
# **ckpt_kwargs,
|
385 |
+
# )
|
386 |
+
|
387 |
+
# else:
|
388 |
+
# encoder_hidden_states, hidden_states = block(
|
389 |
+
# hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
|
390 |
+
# )
|
391 |
+
|
392 |
+
for block_idx, block in enumerate(self.transformer_blocks):
|
393 |
+
encoder_hidden_states, hidden_states = block(
|
394 |
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb.repeat(F_num,1), freqs_cis=freqs_cis, full_seqlen=full_seq, Frame=F_num
|
395 |
+
)
|
396 |
+
|
397 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
398 |
+
hidden_states = self.proj_out(hidden_states)
|
399 |
+
|
400 |
+
# unpatchify
|
401 |
+
# hidden_states = hidden_states[:, :-1] #Drop the video token
|
402 |
+
|
403 |
+
# unpatchify
|
404 |
+
patch_size = self.config.patch_size
|
405 |
+
height = height // patch_size
|
406 |
+
width = width // patch_size
|
407 |
+
|
408 |
+
hidden_states = hidden_states.reshape(
|
409 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
410 |
+
)
|
411 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
412 |
+
output = hidden_states.reshape(
|
413 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
414 |
+
)
|
415 |
+
|
416 |
+
if USE_PEFT_BACKEND:
|
417 |
+
# remove `lora_scale` from each PEFT layer
|
418 |
+
unscale_lora_layers(self, lora_scale)
|
419 |
+
|
420 |
+
if not return_dict:
|
421 |
+
return (output,)
|
422 |
+
|
423 |
+
return Transformer2DModelOutput(sample=output)
|
424 |
+
|
425 |
+
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
|
426 |
+
return list(self.transformer_blocks)
|
427 |
+
|
428 |
+
@classmethod
|
429 |
+
def from_pretrained_temporal(cls, pretrained_model_path, torch_dtype, logger, subfolder=None, tp_size=1):
|
430 |
+
|
431 |
+
import os
|
432 |
+
import json
|
433 |
+
|
434 |
+
if subfolder is not None:
|
435 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
436 |
+
|
437 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
438 |
+
|
439 |
+
with open(config_file, "r") as f:
|
440 |
+
config = json.load(f)
|
441 |
+
|
442 |
+
config["tp_size"] = tp_size
|
443 |
+
from diffusers.utils import WEIGHTS_NAME
|
444 |
+
from safetensors.torch import load_file,load_model
|
445 |
+
model = cls.from_config(config)
|
446 |
+
# model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
447 |
+
|
448 |
+
model_files = [
|
449 |
+
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
|
450 |
+
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
|
451 |
+
]
|
452 |
+
|
453 |
+
model_file = None
|
454 |
+
|
455 |
+
for fp in model_files:
|
456 |
+
if os.path.exists(fp):
|
457 |
+
model_file = fp
|
458 |
+
|
459 |
+
if not model_file:
|
460 |
+
raise RuntimeError(f"{model_file} does not exist")
|
461 |
+
|
462 |
+
if not os.path.isfile(model_file):
|
463 |
+
raise RuntimeError(f"{model_file} does not exist")
|
464 |
+
|
465 |
+
|
466 |
+
state_dict = load_file(model_file,device="cpu")
|
467 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
468 |
+
model = model.to(torch_dtype)
|
469 |
+
|
470 |
+
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
|
471 |
+
total_params = [p.numel() for n, p in model.named_parameters()]
|
472 |
+
|
473 |
+
if logger is not None:
|
474 |
+
logger.info(f"model_file: {model_file}")
|
475 |
+
logger.info(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
476 |
+
logger.info(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
|
477 |
+
logger.info(f"### Total Parameters: {sum(total_params) / 1e6} M")
|
478 |
+
|
479 |
+
return model
|
models/__init__.py
ADDED
File without changes
|
models/__pycache__/VchitectXL.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (161 Bytes). View file
|
|
models/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (72.1 kB). View file
|
|
models/__pycache__/autoencoder_kl_temporal_decoder.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
models/__pycache__/blocks.cpython-310.pyc
ADDED
Binary file (19.3 kB). View file
|
|
models/__pycache__/layers.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
models/__pycache__/modeling_t5.cpython-310.pyc
ADDED
Binary file (65.1 kB). View file
|
|
models/__pycache__/models.cpython-310.pyc
ADDED
Binary file (8.81 kB). View file
|
|
models/__pycache__/motion_module.cpython-310.pyc
ADDED
Binary file (8.3 kB). View file
|
|
models/__pycache__/pipeline.cpython-310.pyc
ADDED
Binary file (31.1 kB). View file
|
|
models/__pycache__/scheduling_ddim_cogvideox.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
models/__pycache__/sd3_attention.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
models/__pycache__/sd3_models.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
models/__pycache__/sd3_sparse.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
models/__pycache__/sd3_sparse_ae_temporal_pipeline.cpython-310.pyc
ADDED
Binary file (31.9 kB). View file
|
|
models/__pycache__/sd3_sparse_i2v_pipeline.cpython-310.pyc
ADDED
Binary file (31.9 kB). View file
|
|
models/__pycache__/sd3_sparse_init_pipeline.cpython-310.pyc
ADDED
Binary file (32.7 kB). View file
|
|
models/__pycache__/sd3_sparse_pipeline.cpython-310.pyc
ADDED
Binary file (31.4 kB). View file
|
|
models/__pycache__/sparse_attention.cpython-310.pyc
ADDED
Binary file (72.1 kB). View file
|
|
models/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (1.66 kB). View file
|
|
models/attention.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/blocks.py
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils import deprecate, logging
|
21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
23 |
+
# from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
|
24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
26 |
+
from models.attention import Attention, VchitectAttnProcessor
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
ff_output = torch.cat(
|
40 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
41 |
+
dim=chunk_dim,
|
42 |
+
)
|
43 |
+
return ff_output
|
44 |
+
|
45 |
+
|
46 |
+
@maybe_allow_in_graph
|
47 |
+
class GatedSelfAttentionDense(nn.Module):
|
48 |
+
r"""
|
49 |
+
A gated self-attention dense layer that combines visual features and object features.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
query_dim (`int`): The number of channels in the query.
|
53 |
+
context_dim (`int`): The number of channels in the context.
|
54 |
+
n_heads (`int`): The number of heads to use for attention.
|
55 |
+
d_head (`int`): The number of channels in each head.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
62 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
63 |
+
|
64 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
65 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
66 |
+
|
67 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
68 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
69 |
+
|
70 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
71 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
72 |
+
|
73 |
+
self.enabled = True
|
74 |
+
|
75 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
76 |
+
if not self.enabled:
|
77 |
+
return x
|
78 |
+
|
79 |
+
n_visual = x.shape[1]
|
80 |
+
objs = self.linear(objs)
|
81 |
+
|
82 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
83 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
84 |
+
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
@maybe_allow_in_graph
|
89 |
+
class JointTransformerBlock(nn.Module):
|
90 |
+
r"""
|
91 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
92 |
+
|
93 |
+
Reference: https://arxiv.org/abs/2403.03206
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
dim (`int`): The number of channels in the input and output.
|
97 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
98 |
+
attention_head_dim (`int`): The number of channels in each head.
|
99 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
100 |
+
processing of `context` conditions.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False, tp_size=1):
|
104 |
+
super().__init__()
|
105 |
+
|
106 |
+
self.context_pre_only = context_pre_only
|
107 |
+
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
108 |
+
|
109 |
+
self.norm1 = AdaLayerNormZero(dim)
|
110 |
+
|
111 |
+
if context_norm_type == "ada_norm_continous":
|
112 |
+
self.norm1_context = AdaLayerNormContinuous(
|
113 |
+
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
114 |
+
)
|
115 |
+
elif context_norm_type == "ada_norm_zero":
|
116 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
117 |
+
else:
|
118 |
+
raise ValueError(
|
119 |
+
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
120 |
+
)
|
121 |
+
# if hasattr(F, "scaled_dot_product_attention"):
|
122 |
+
# processor = VchitectAttnProcessor()
|
123 |
+
# else:
|
124 |
+
# raise ValueError(
|
125 |
+
# "The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
126 |
+
# )
|
127 |
+
processor = VchitectAttnProcessor()
|
128 |
+
self.attn = Attention(
|
129 |
+
query_dim=dim,
|
130 |
+
cross_attention_dim=None,
|
131 |
+
added_kv_proj_dim=dim,
|
132 |
+
dim_head=attention_head_dim // num_attention_heads,
|
133 |
+
heads=num_attention_heads,
|
134 |
+
out_dim=attention_head_dim,
|
135 |
+
context_pre_only=context_pre_only,
|
136 |
+
bias=True,
|
137 |
+
processor=processor,
|
138 |
+
tp_size = tp_size
|
139 |
+
)
|
140 |
+
|
141 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
142 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
143 |
+
|
144 |
+
if not context_pre_only:
|
145 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
146 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
147 |
+
else:
|
148 |
+
self.norm2_context = None
|
149 |
+
self.ff_context = None
|
150 |
+
|
151 |
+
# let chunk size default to None
|
152 |
+
self._chunk_size = None
|
153 |
+
self._chunk_dim = 0
|
154 |
+
|
155 |
+
|
156 |
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
157 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
158 |
+
# Sets chunk feed-forward
|
159 |
+
self._chunk_size = chunk_size
|
160 |
+
self._chunk_dim = dim
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, freqs_cis: torch.Tensor, full_seqlen: int, Frame: int
|
164 |
+
):
|
165 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
166 |
+
if self.context_pre_only:
|
167 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
168 |
+
else:
|
169 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
170 |
+
encoder_hidden_states, emb=temb
|
171 |
+
)
|
172 |
+
|
173 |
+
# Attention.
|
174 |
+
attn_output, context_attn_output = self.attn(
|
175 |
+
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
|
176 |
+
freqs_cis=freqs_cis,
|
177 |
+
full_seqlen=full_seqlen,
|
178 |
+
Frame=Frame,
|
179 |
+
)
|
180 |
+
|
181 |
+
# Process attention outputs for the `hidden_states`.
|
182 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
183 |
+
hidden_states = hidden_states + attn_output
|
184 |
+
|
185 |
+
norm_hidden_states = self.norm2(hidden_states)
|
186 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
187 |
+
if self._chunk_size is not None:
|
188 |
+
# "feed_forward_chunk_size" can be used to save memory
|
189 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
190 |
+
else:
|
191 |
+
ff_output = self.ff(norm_hidden_states)
|
192 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
193 |
+
|
194 |
+
hidden_states = hidden_states + ff_output
|
195 |
+
|
196 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
197 |
+
if self.context_pre_only:
|
198 |
+
encoder_hidden_states = None
|
199 |
+
else:
|
200 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
201 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
202 |
+
|
203 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
204 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
205 |
+
if self._chunk_size is not None:
|
206 |
+
# "feed_forward_chunk_size" can be used to save memory
|
207 |
+
context_ff_output = _chunked_feed_forward(
|
208 |
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
212 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
213 |
+
|
214 |
+
return encoder_hidden_states, hidden_states
|
215 |
+
|
216 |
+
|
217 |
+
@maybe_allow_in_graph
|
218 |
+
class BasicTransformerBlock(nn.Module):
|
219 |
+
r"""
|
220 |
+
A basic Transformer block.
|
221 |
+
|
222 |
+
Parameters:
|
223 |
+
dim (`int`): The number of channels in the input and output.
|
224 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
225 |
+
attention_head_dim (`int`): The number of channels in each head.
|
226 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
227 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
228 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
229 |
+
num_embeds_ada_norm (:
|
230 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
231 |
+
attention_bias (:
|
232 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
233 |
+
only_cross_attention (`bool`, *optional*):
|
234 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
235 |
+
double_self_attention (`bool`, *optional*):
|
236 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
237 |
+
upcast_attention (`bool`, *optional*):
|
238 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
239 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
240 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
241 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
242 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
243 |
+
final_dropout (`bool` *optional*, defaults to False):
|
244 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
245 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
246 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
247 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
248 |
+
The type of positional embeddings to apply to.
|
249 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
250 |
+
The maximum number of positional embeddings to apply.
|
251 |
+
"""
|
252 |
+
|
253 |
+
def __init__(
|
254 |
+
self,
|
255 |
+
dim: int,
|
256 |
+
num_attention_heads: int,
|
257 |
+
attention_head_dim: int,
|
258 |
+
dropout=0.0,
|
259 |
+
cross_attention_dim: Optional[int] = None,
|
260 |
+
activation_fn: str = "geglu",
|
261 |
+
num_embeds_ada_norm: Optional[int] = None,
|
262 |
+
attention_bias: bool = False,
|
263 |
+
only_cross_attention: bool = False,
|
264 |
+
double_self_attention: bool = False,
|
265 |
+
upcast_attention: bool = False,
|
266 |
+
norm_elementwise_affine: bool = True,
|
267 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
268 |
+
norm_eps: float = 1e-5,
|
269 |
+
final_dropout: bool = False,
|
270 |
+
attention_type: str = "default",
|
271 |
+
positional_embeddings: Optional[str] = None,
|
272 |
+
num_positional_embeddings: Optional[int] = None,
|
273 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
274 |
+
ada_norm_bias: Optional[int] = None,
|
275 |
+
ff_inner_dim: Optional[int] = None,
|
276 |
+
ff_bias: bool = True,
|
277 |
+
attention_out_bias: bool = True,
|
278 |
+
):
|
279 |
+
super().__init__()
|
280 |
+
self.only_cross_attention = only_cross_attention
|
281 |
+
|
282 |
+
# We keep these boolean flags for backward-compatibility.
|
283 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
284 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
285 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
286 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
287 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
288 |
+
|
289 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
290 |
+
raise ValueError(
|
291 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
292 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
293 |
+
)
|
294 |
+
|
295 |
+
self.norm_type = norm_type
|
296 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
297 |
+
|
298 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
299 |
+
raise ValueError(
|
300 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
301 |
+
)
|
302 |
+
|
303 |
+
if positional_embeddings == "sinusoidal":
|
304 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
305 |
+
else:
|
306 |
+
self.pos_embed = None
|
307 |
+
|
308 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
309 |
+
# 1. Self-Attn
|
310 |
+
if norm_type == "ada_norm":
|
311 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
312 |
+
elif norm_type == "ada_norm_zero":
|
313 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
314 |
+
elif norm_type == "ada_norm_continuous":
|
315 |
+
self.norm1 = AdaLayerNormContinuous(
|
316 |
+
dim,
|
317 |
+
ada_norm_continous_conditioning_embedding_dim,
|
318 |
+
norm_elementwise_affine,
|
319 |
+
norm_eps,
|
320 |
+
ada_norm_bias,
|
321 |
+
"rms_norm",
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
325 |
+
|
326 |
+
self.attn1 = Attention(
|
327 |
+
query_dim=dim,
|
328 |
+
heads=num_attention_heads,
|
329 |
+
dim_head=attention_head_dim,
|
330 |
+
dropout=dropout,
|
331 |
+
bias=attention_bias,
|
332 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
333 |
+
upcast_attention=upcast_attention,
|
334 |
+
out_bias=attention_out_bias,
|
335 |
+
)
|
336 |
+
|
337 |
+
# 2. Cross-Attn
|
338 |
+
if cross_attention_dim is not None or double_self_attention:
|
339 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
340 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
341 |
+
# the second cross attention block.
|
342 |
+
if norm_type == "ada_norm":
|
343 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
344 |
+
elif norm_type == "ada_norm_continuous":
|
345 |
+
self.norm2 = AdaLayerNormContinuous(
|
346 |
+
dim,
|
347 |
+
ada_norm_continous_conditioning_embedding_dim,
|
348 |
+
norm_elementwise_affine,
|
349 |
+
norm_eps,
|
350 |
+
ada_norm_bias,
|
351 |
+
"rms_norm",
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
355 |
+
|
356 |
+
self.attn2 = Attention(
|
357 |
+
query_dim=dim,
|
358 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
359 |
+
heads=num_attention_heads,
|
360 |
+
dim_head=attention_head_dim,
|
361 |
+
dropout=dropout,
|
362 |
+
bias=attention_bias,
|
363 |
+
upcast_attention=upcast_attention,
|
364 |
+
out_bias=attention_out_bias,
|
365 |
+
) # is self-attn if encoder_hidden_states is none
|
366 |
+
else:
|
367 |
+
self.norm2 = None
|
368 |
+
self.attn2 = None
|
369 |
+
|
370 |
+
# 3. Feed-forward
|
371 |
+
if norm_type == "ada_norm_continuous":
|
372 |
+
self.norm3 = AdaLayerNormContinuous(
|
373 |
+
dim,
|
374 |
+
ada_norm_continous_conditioning_embedding_dim,
|
375 |
+
norm_elementwise_affine,
|
376 |
+
norm_eps,
|
377 |
+
ada_norm_bias,
|
378 |
+
"layer_norm",
|
379 |
+
)
|
380 |
+
|
381 |
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
|
382 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
383 |
+
elif norm_type == "layer_norm_i2vgen":
|
384 |
+
self.norm3 = None
|
385 |
+
|
386 |
+
self.ff = FeedForward(
|
387 |
+
dim,
|
388 |
+
dropout=dropout,
|
389 |
+
activation_fn=activation_fn,
|
390 |
+
final_dropout=final_dropout,
|
391 |
+
inner_dim=ff_inner_dim,
|
392 |
+
bias=ff_bias,
|
393 |
+
)
|
394 |
+
|
395 |
+
# 4. Fuser
|
396 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
397 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
398 |
+
|
399 |
+
# 5. Scale-shift for PixArt-Alpha.
|
400 |
+
if norm_type == "ada_norm_single":
|
401 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
402 |
+
|
403 |
+
# let chunk size default to None
|
404 |
+
self._chunk_size = None
|
405 |
+
self._chunk_dim = 0
|
406 |
+
|
407 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
408 |
+
# Sets chunk feed-forward
|
409 |
+
self._chunk_size = chunk_size
|
410 |
+
self._chunk_dim = dim
|
411 |
+
|
412 |
+
def forward(
|
413 |
+
self,
|
414 |
+
hidden_states: torch.Tensor,
|
415 |
+
attention_mask: Optional[torch.Tensor] = None,
|
416 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
417 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
418 |
+
timestep: Optional[torch.LongTensor] = None,
|
419 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
420 |
+
class_labels: Optional[torch.LongTensor] = None,
|
421 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
422 |
+
) -> torch.Tensor:
|
423 |
+
if cross_attention_kwargs is not None:
|
424 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
425 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
426 |
+
|
427 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
428 |
+
# 0. Self-Attention
|
429 |
+
batch_size = hidden_states.shape[0]
|
430 |
+
|
431 |
+
if self.norm_type == "ada_norm":
|
432 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
433 |
+
elif self.norm_type == "ada_norm_zero":
|
434 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
435 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
436 |
+
)
|
437 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
438 |
+
norm_hidden_states = self.norm1(hidden_states)
|
439 |
+
elif self.norm_type == "ada_norm_continuous":
|
440 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
441 |
+
elif self.norm_type == "ada_norm_single":
|
442 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
443 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
444 |
+
).chunk(6, dim=1)
|
445 |
+
norm_hidden_states = self.norm1(hidden_states)
|
446 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
447 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
448 |
+
else:
|
449 |
+
raise ValueError("Incorrect norm used")
|
450 |
+
|
451 |
+
if self.pos_embed is not None:
|
452 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
453 |
+
|
454 |
+
# 1. Prepare GLIGEN inputs
|
455 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
456 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
457 |
+
|
458 |
+
attn_output = self.attn1(
|
459 |
+
norm_hidden_states,
|
460 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
461 |
+
attention_mask=attention_mask,
|
462 |
+
**cross_attention_kwargs,
|
463 |
+
)
|
464 |
+
if self.norm_type == "ada_norm_zero":
|
465 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
466 |
+
elif self.norm_type == "ada_norm_single":
|
467 |
+
attn_output = gate_msa * attn_output
|
468 |
+
|
469 |
+
hidden_states = attn_output + hidden_states
|
470 |
+
if hidden_states.ndim == 4:
|
471 |
+
hidden_states = hidden_states.squeeze(1)
|
472 |
+
|
473 |
+
# 1.2 GLIGEN Control
|
474 |
+
if gligen_kwargs is not None:
|
475 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
476 |
+
|
477 |
+
# 3. Cross-Attention
|
478 |
+
if self.attn2 is not None:
|
479 |
+
if self.norm_type == "ada_norm":
|
480 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
481 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
482 |
+
norm_hidden_states = self.norm2(hidden_states)
|
483 |
+
elif self.norm_type == "ada_norm_single":
|
484 |
+
# For PixArt norm2 isn't applied here:
|
485 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
486 |
+
norm_hidden_states = hidden_states
|
487 |
+
elif self.norm_type == "ada_norm_continuous":
|
488 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
489 |
+
else:
|
490 |
+
raise ValueError("Incorrect norm")
|
491 |
+
|
492 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
493 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
494 |
+
|
495 |
+
attn_output = self.attn2(
|
496 |
+
norm_hidden_states,
|
497 |
+
encoder_hidden_states=encoder_hidden_states,
|
498 |
+
attention_mask=encoder_attention_mask,
|
499 |
+
**cross_attention_kwargs,
|
500 |
+
)
|
501 |
+
hidden_states = attn_output + hidden_states
|
502 |
+
|
503 |
+
# 4. Feed-forward
|
504 |
+
# i2vgen doesn't have this norm 🤷♂️
|
505 |
+
if self.norm_type == "ada_norm_continuous":
|
506 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
507 |
+
elif not self.norm_type == "ada_norm_single":
|
508 |
+
norm_hidden_states = self.norm3(hidden_states)
|
509 |
+
|
510 |
+
if self.norm_type == "ada_norm_zero":
|
511 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
512 |
+
|
513 |
+
if self.norm_type == "ada_norm_single":
|
514 |
+
norm_hidden_states = self.norm2(hidden_states)
|
515 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
516 |
+
|
517 |
+
if self._chunk_size is not None:
|
518 |
+
# "feed_forward_chunk_size" can be used to save memory
|
519 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
520 |
+
else:
|
521 |
+
ff_output = self.ff(norm_hidden_states)
|
522 |
+
|
523 |
+
if self.norm_type == "ada_norm_zero":
|
524 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
525 |
+
elif self.norm_type == "ada_norm_single":
|
526 |
+
ff_output = gate_mlp * ff_output
|
527 |
+
|
528 |
+
hidden_states = ff_output + hidden_states
|
529 |
+
if hidden_states.ndim == 4:
|
530 |
+
hidden_states = hidden_states.squeeze(1)
|
531 |
+
|
532 |
+
return hidden_states
|
533 |
+
|
534 |
+
|
535 |
+
@maybe_allow_in_graph
|
536 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
537 |
+
r"""
|
538 |
+
A basic Transformer block for video like data.
|
539 |
+
|
540 |
+
Parameters:
|
541 |
+
dim (`int`): The number of channels in the input and output.
|
542 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
543 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
544 |
+
attention_head_dim (`int`): The number of channels in each head.
|
545 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
546 |
+
"""
|
547 |
+
|
548 |
+
def __init__(
|
549 |
+
self,
|
550 |
+
dim: int,
|
551 |
+
time_mix_inner_dim: int,
|
552 |
+
num_attention_heads: int,
|
553 |
+
attention_head_dim: int,
|
554 |
+
cross_attention_dim: Optional[int] = None,
|
555 |
+
):
|
556 |
+
super().__init__()
|
557 |
+
self.is_res = dim == time_mix_inner_dim
|
558 |
+
|
559 |
+
self.norm_in = nn.LayerNorm(dim)
|
560 |
+
|
561 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
562 |
+
# 1. Self-Attn
|
563 |
+
self.ff_in = FeedForward(
|
564 |
+
dim,
|
565 |
+
dim_out=time_mix_inner_dim,
|
566 |
+
activation_fn="geglu",
|
567 |
+
)
|
568 |
+
|
569 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
570 |
+
self.attn1 = Attention(
|
571 |
+
query_dim=time_mix_inner_dim,
|
572 |
+
heads=num_attention_heads,
|
573 |
+
dim_head=attention_head_dim,
|
574 |
+
cross_attention_dim=None,
|
575 |
+
)
|
576 |
+
|
577 |
+
# 2. Cross-Attn
|
578 |
+
if cross_attention_dim is not None:
|
579 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
580 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
581 |
+
# the second cross attention block.
|
582 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
583 |
+
self.attn2 = Attention(
|
584 |
+
query_dim=time_mix_inner_dim,
|
585 |
+
cross_attention_dim=cross_attention_dim,
|
586 |
+
heads=num_attention_heads,
|
587 |
+
dim_head=attention_head_dim,
|
588 |
+
) # is self-attn if encoder_hidden_states is none
|
589 |
+
else:
|
590 |
+
self.norm2 = None
|
591 |
+
self.attn2 = None
|
592 |
+
|
593 |
+
# 3. Feed-forward
|
594 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
595 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
596 |
+
|
597 |
+
# let chunk size default to None
|
598 |
+
self._chunk_size = None
|
599 |
+
self._chunk_dim = None
|
600 |
+
|
601 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
602 |
+
# Sets chunk feed-forward
|
603 |
+
self._chunk_size = chunk_size
|
604 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
605 |
+
self._chunk_dim = 1
|
606 |
+
|
607 |
+
def forward(
|
608 |
+
self,
|
609 |
+
hidden_states: torch.Tensor,
|
610 |
+
num_frames: int,
|
611 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
612 |
+
) -> torch.Tensor:
|
613 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
614 |
+
# 0. Self-Attention
|
615 |
+
batch_size = hidden_states.shape[0]
|
616 |
+
|
617 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
618 |
+
batch_size = batch_frames // num_frames
|
619 |
+
|
620 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
621 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
622 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
623 |
+
|
624 |
+
residual = hidden_states
|
625 |
+
hidden_states = self.norm_in(hidden_states)
|
626 |
+
|
627 |
+
if self._chunk_size is not None:
|
628 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
629 |
+
else:
|
630 |
+
hidden_states = self.ff_in(hidden_states)
|
631 |
+
|
632 |
+
if self.is_res:
|
633 |
+
hidden_states = hidden_states + residual
|
634 |
+
|
635 |
+
norm_hidden_states = self.norm1(hidden_states)
|
636 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
637 |
+
hidden_states = attn_output + hidden_states
|
638 |
+
|
639 |
+
# 3. Cross-Attention
|
640 |
+
if self.attn2 is not None:
|
641 |
+
norm_hidden_states = self.norm2(hidden_states)
|
642 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
643 |
+
hidden_states = attn_output + hidden_states
|
644 |
+
|
645 |
+
# 4. Feed-forward
|
646 |
+
norm_hidden_states = self.norm3(hidden_states)
|
647 |
+
|
648 |
+
if self._chunk_size is not None:
|
649 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
650 |
+
else:
|
651 |
+
ff_output = self.ff(norm_hidden_states)
|
652 |
+
|
653 |
+
if self.is_res:
|
654 |
+
hidden_states = ff_output + hidden_states
|
655 |
+
else:
|
656 |
+
hidden_states = ff_output
|
657 |
+
|
658 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
659 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
660 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
661 |
+
|
662 |
+
return hidden_states
|
663 |
+
|
664 |
+
|
665 |
+
class SkipFFTransformerBlock(nn.Module):
|
666 |
+
def __init__(
|
667 |
+
self,
|
668 |
+
dim: int,
|
669 |
+
num_attention_heads: int,
|
670 |
+
attention_head_dim: int,
|
671 |
+
kv_input_dim: int,
|
672 |
+
kv_input_dim_proj_use_bias: bool,
|
673 |
+
dropout=0.0,
|
674 |
+
cross_attention_dim: Optional[int] = None,
|
675 |
+
attention_bias: bool = False,
|
676 |
+
attention_out_bias: bool = True,
|
677 |
+
):
|
678 |
+
super().__init__()
|
679 |
+
if kv_input_dim != dim:
|
680 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
681 |
+
else:
|
682 |
+
self.kv_mapper = None
|
683 |
+
|
684 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
685 |
+
|
686 |
+
self.attn1 = Attention(
|
687 |
+
query_dim=dim,
|
688 |
+
heads=num_attention_heads,
|
689 |
+
dim_head=attention_head_dim,
|
690 |
+
dropout=dropout,
|
691 |
+
bias=attention_bias,
|
692 |
+
cross_attention_dim=cross_attention_dim,
|
693 |
+
out_bias=attention_out_bias,
|
694 |
+
)
|
695 |
+
|
696 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
697 |
+
|
698 |
+
self.attn2 = Attention(
|
699 |
+
query_dim=dim,
|
700 |
+
cross_attention_dim=cross_attention_dim,
|
701 |
+
heads=num_attention_heads,
|
702 |
+
dim_head=attention_head_dim,
|
703 |
+
dropout=dropout,
|
704 |
+
bias=attention_bias,
|
705 |
+
out_bias=attention_out_bias,
|
706 |
+
)
|
707 |
+
|
708 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
709 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
710 |
+
|
711 |
+
if self.kv_mapper is not None:
|
712 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
713 |
+
|
714 |
+
norm_hidden_states = self.norm1(hidden_states)
|
715 |
+
|
716 |
+
attn_output = self.attn1(
|
717 |
+
norm_hidden_states,
|
718 |
+
encoder_hidden_states=encoder_hidden_states,
|
719 |
+
**cross_attention_kwargs,
|
720 |
+
)
|
721 |
+
|
722 |
+
hidden_states = attn_output + hidden_states
|
723 |
+
|
724 |
+
norm_hidden_states = self.norm2(hidden_states)
|
725 |
+
|
726 |
+
attn_output = self.attn2(
|
727 |
+
norm_hidden_states,
|
728 |
+
encoder_hidden_states=encoder_hidden_states,
|
729 |
+
**cross_attention_kwargs,
|
730 |
+
)
|
731 |
+
|
732 |
+
hidden_states = attn_output + hidden_states
|
733 |
+
|
734 |
+
return hidden_states
|
735 |
+
|
736 |
+
|
737 |
+
class FeedForward(nn.Module):
|
738 |
+
r"""
|
739 |
+
A feed-forward layer.
|
740 |
+
|
741 |
+
Parameters:
|
742 |
+
dim (`int`): The number of channels in the input.
|
743 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
744 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
745 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
746 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
747 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
748 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
749 |
+
"""
|
750 |
+
|
751 |
+
def __init__(
|
752 |
+
self,
|
753 |
+
dim: int,
|
754 |
+
dim_out: Optional[int] = None,
|
755 |
+
mult: int = 4,
|
756 |
+
dropout: float = 0.0,
|
757 |
+
activation_fn: str = "geglu",
|
758 |
+
final_dropout: bool = False,
|
759 |
+
inner_dim=None,
|
760 |
+
bias: bool = True,
|
761 |
+
):
|
762 |
+
super().__init__()
|
763 |
+
if inner_dim is None:
|
764 |
+
inner_dim = int(dim * mult)
|
765 |
+
dim_out = dim_out if dim_out is not None else dim
|
766 |
+
|
767 |
+
if activation_fn == "gelu":
|
768 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
769 |
+
if activation_fn == "gelu-approximate":
|
770 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
771 |
+
elif activation_fn == "geglu":
|
772 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
773 |
+
elif activation_fn == "geglu-approximate":
|
774 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
775 |
+
|
776 |
+
self.net = nn.ModuleList([])
|
777 |
+
# project in
|
778 |
+
self.net.append(act_fn)
|
779 |
+
# project dropout
|
780 |
+
self.net.append(nn.Dropout(dropout))
|
781 |
+
# project out
|
782 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
783 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
784 |
+
if final_dropout:
|
785 |
+
self.net.append(nn.Dropout(dropout))
|
786 |
+
|
787 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
788 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
789 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
790 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
791 |
+
for module in self.net:
|
792 |
+
hidden_states = module(hidden_states)
|
793 |
+
return hidden_states
|
models/modeling_t5.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/pipeline.py
ADDED
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from transformers import (
|
20 |
+
CLIPTextModelWithProjection,
|
21 |
+
CLIPTokenizer,
|
22 |
+
T5TokenizerFast,
|
23 |
+
)
|
24 |
+
from models.modeling_t5 import T5EncoderModel
|
25 |
+
from models.VchitectXL import VchitectXLTransformerModel
|
26 |
+
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel, CLIPTextModelWithProjection
|
27 |
+
from diffusers.image_processor import VaeImageProcessor
|
28 |
+
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
|
29 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
30 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
31 |
+
from diffusers.utils import (
|
32 |
+
is_torch_xla_available,
|
33 |
+
logging,
|
34 |
+
replace_example_docstring,
|
35 |
+
)
|
36 |
+
from diffusers.utils.torch_utils import randn_tensor
|
37 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
38 |
+
|
39 |
+
from op_replace import replace_all_layernorms
|
40 |
+
if is_torch_xla_available():
|
41 |
+
import torch_xla.core.xla_model as xm
|
42 |
+
XLA_AVAILABLE = True
|
43 |
+
else:
|
44 |
+
XLA_AVAILABLE = False
|
45 |
+
|
46 |
+
import math
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
49 |
+
|
50 |
+
EXAMPLE_DOC_STRING = """
|
51 |
+
Examples:
|
52 |
+
```py
|
53 |
+
>>> import torch
|
54 |
+
>>> from diffusers import VchitectXLPipeline
|
55 |
+
|
56 |
+
>>> pipe = VchitectXLPipeline.from_pretrained(
|
57 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
58 |
+
... )
|
59 |
+
>>> pipe.to("cuda")
|
60 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
61 |
+
>>> image = pipe(prompt).images[0]
|
62 |
+
>>> image.save("sd3.png")
|
63 |
+
```
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
68 |
+
def retrieve_timesteps(
|
69 |
+
scheduler,
|
70 |
+
num_inference_steps: Optional[int] = None,
|
71 |
+
device: Optional[Union[str, torch.device]] = None,
|
72 |
+
timesteps: Optional[List[int]] = None,
|
73 |
+
sigmas: Optional[List[float]] = None,
|
74 |
+
**kwargs,
|
75 |
+
):
|
76 |
+
"""
|
77 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
78 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
scheduler (`SchedulerMixin`):
|
82 |
+
The scheduler to get timesteps from.
|
83 |
+
num_inference_steps (`int`):
|
84 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
85 |
+
must be `None`.
|
86 |
+
device (`str` or `torch.device`, *optional*):
|
87 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
88 |
+
timesteps (`List[int]`, *optional*):
|
89 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
90 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
91 |
+
sigmas (`List[float]`, *optional*):
|
92 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
93 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
97 |
+
second element is the number of inference steps.
|
98 |
+
"""
|
99 |
+
if timesteps is not None and sigmas is not None:
|
100 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
101 |
+
if timesteps is not None:
|
102 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
103 |
+
if not accepts_timesteps:
|
104 |
+
raise ValueError(
|
105 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
106 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
107 |
+
)
|
108 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
109 |
+
timesteps = scheduler.timesteps
|
110 |
+
num_inference_steps = len(timesteps)
|
111 |
+
elif sigmas is not None:
|
112 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
113 |
+
if not accept_sigmas:
|
114 |
+
raise ValueError(
|
115 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
116 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
117 |
+
)
|
118 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
119 |
+
timesteps = scheduler.timesteps
|
120 |
+
num_inference_steps = len(timesteps)
|
121 |
+
else:
|
122 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
123 |
+
timesteps = scheduler.timesteps
|
124 |
+
return timesteps, num_inference_steps
|
125 |
+
|
126 |
+
def load_text_encoders(load_path, class_one, class_two, class_three, precision="fp16"):
|
127 |
+
text_encoder_one = class_one.from_pretrained(
|
128 |
+
load_path, subfolder="text_encoder", revision=None, variant=precision
|
129 |
+
)
|
130 |
+
text_encoder_two = class_two.from_pretrained(
|
131 |
+
load_path, subfolder="text_encoder_2", revision=None, variant=precision
|
132 |
+
)
|
133 |
+
text_encoder_three = class_three.from_pretrained(
|
134 |
+
load_path, subfolder="text_encoder_3", revision=None, variant=precision
|
135 |
+
)
|
136 |
+
return text_encoder_one, text_encoder_two, text_encoder_three
|
137 |
+
|
138 |
+
|
139 |
+
def import_model_class_from_model_name_or_path(
|
140 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
141 |
+
):
|
142 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
143 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
144 |
+
)
|
145 |
+
model_class = text_encoder_config.architectures[0]
|
146 |
+
if model_class == "CLIPTextModelWithProjection":
|
147 |
+
from transformers import CLIPTextModelWithProjection
|
148 |
+
|
149 |
+
return CLIPTextModelWithProjection
|
150 |
+
elif model_class == "T5EncoderModel":
|
151 |
+
from transformers import T5EncoderModel
|
152 |
+
|
153 |
+
return T5EncoderModel
|
154 |
+
else:
|
155 |
+
raise ValueError(f"{model_class} is not supported.")
|
156 |
+
|
157 |
+
class VchitectXLPipeline():
|
158 |
+
r"""
|
159 |
+
Args:
|
160 |
+
transformer ([`VchitectXLTransformerModel`]):
|
161 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
162 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
163 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
164 |
+
vae ([`AutoencoderKL`]):
|
165 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
166 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
167 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
168 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
169 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
170 |
+
as its dimension.
|
171 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
172 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
173 |
+
specifically the
|
174 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
175 |
+
variant.
|
176 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
177 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
178 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
179 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
180 |
+
tokenizer (`CLIPTokenizer`):
|
181 |
+
Tokenizer of class
|
182 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
183 |
+
tokenizer_2 (`CLIPTokenizer`):
|
184 |
+
Second Tokenizer of class
|
185 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
186 |
+
tokenizer_3 (`T5TokenizerFast`):
|
187 |
+
Tokenizer of class
|
188 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
189 |
+
"""
|
190 |
+
|
191 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
|
192 |
+
_optional_components = []
|
193 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
load_path = None,
|
198 |
+
device = None,
|
199 |
+
):
|
200 |
+
super().__init__()
|
201 |
+
|
202 |
+
# Load the tokenizers
|
203 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
204 |
+
load_path,
|
205 |
+
subfolder="tokenizer",
|
206 |
+
revision=None,
|
207 |
+
)
|
208 |
+
self.tokenizer_2 = CLIPTokenizer.from_pretrained(
|
209 |
+
load_path,
|
210 |
+
subfolder="tokenizer_2",
|
211 |
+
revision=None,
|
212 |
+
)
|
213 |
+
self.tokenizer_3 = T5TokenizerFast.from_pretrained(
|
214 |
+
load_path,
|
215 |
+
subfolder="tokenizer_3",
|
216 |
+
revision=None,
|
217 |
+
)
|
218 |
+
|
219 |
+
# import correct text encoder classes
|
220 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
221 |
+
load_path, None
|
222 |
+
)
|
223 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
224 |
+
load_path, None, subfolder="text_encoder_2"
|
225 |
+
)
|
226 |
+
text_encoder_cls_three = import_model_class_from_model_name_or_path(
|
227 |
+
load_path, None, subfolder="text_encoder_3"
|
228 |
+
)
|
229 |
+
# Load scheduler and models
|
230 |
+
self.text_encoder, self.text_encoder_2, self.text_encoder_3 = load_text_encoders(
|
231 |
+
load_path, text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three, None
|
232 |
+
)
|
233 |
+
self.text_encoder, self.text_encoder_2, self.text_encoder_3 = self.text_encoder.to(device), self.text_encoder_2.to(device), self.text_encoder_3.to(device)
|
234 |
+
|
235 |
+
self.vae = AutoencoderKL.from_pretrained(
|
236 |
+
load_path,
|
237 |
+
subfolder="vae",
|
238 |
+
revision=None,
|
239 |
+
variant=None,
|
240 |
+
).to(device)
|
241 |
+
|
242 |
+
# self.transformer = VchitectXLTransformerModel.from_pretrained_temporal(load_path,torch_dtype=torch.bfloat16,logger=None,subfolder="transformer").to(device)
|
243 |
+
self.transformer = VchitectXLTransformerModel.from_pretrained(load_path,torch_dtype=torch.bfloat16,subfolder="transformer").to(device)
|
244 |
+
self.transformer = replace_all_layernorms(self.transformer)
|
245 |
+
self.transformer.eval()
|
246 |
+
|
247 |
+
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
248 |
+
load_path, subfolder="scheduler"
|
249 |
+
)
|
250 |
+
|
251 |
+
self.execution_device = "cuda"
|
252 |
+
|
253 |
+
self.vae_scale_factor = (
|
254 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
255 |
+
)
|
256 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
257 |
+
self.tokenizer_max_length = (
|
258 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
259 |
+
)
|
260 |
+
self.max_sequence_length_t5 = 256
|
261 |
+
self.default_sample_size = (
|
262 |
+
self.transformer.config.sample_size
|
263 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
264 |
+
else 128
|
265 |
+
)
|
266 |
+
|
267 |
+
def _get_t5_prompt_embeds(
|
268 |
+
self,
|
269 |
+
prompt: Union[str, List[str]] = None,
|
270 |
+
num_images_per_prompt: int = 1,
|
271 |
+
device: Optional[torch.device] = None,
|
272 |
+
dtype: Optional[torch.dtype] = None,
|
273 |
+
):
|
274 |
+
device = device or self.execution_device
|
275 |
+
dtype = dtype or self.text_encoder.dtype
|
276 |
+
|
277 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
278 |
+
batch_size = len(prompt)
|
279 |
+
|
280 |
+
if self.text_encoder_3 is None:
|
281 |
+
return torch.zeros(
|
282 |
+
(batch_size, self.max_sequence_length_t5, self.transformer.config.joint_attention_dim),
|
283 |
+
device=device,
|
284 |
+
dtype=dtype,
|
285 |
+
)
|
286 |
+
|
287 |
+
text_inputs = self.tokenizer_3(
|
288 |
+
prompt,
|
289 |
+
padding="max_length",
|
290 |
+
max_length=self.max_sequence_length_t5,
|
291 |
+
truncation=True,
|
292 |
+
add_special_tokens=True,
|
293 |
+
return_tensors="pt",
|
294 |
+
)
|
295 |
+
text_input_ids = text_inputs.input_ids
|
296 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
297 |
+
|
298 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
299 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.max_sequence_length_t5 - 1 : -1])
|
300 |
+
logger.warning(
|
301 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
302 |
+
f" {self.max_sequence_length_t5} tokens: {removed_text}"
|
303 |
+
)
|
304 |
+
|
305 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
306 |
+
|
307 |
+
dtype = self.text_encoder_3.dtype
|
308 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
309 |
+
|
310 |
+
_, seq_len, _ = prompt_embeds.shape
|
311 |
+
|
312 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
313 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
314 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
315 |
+
|
316 |
+
return prompt_embeds
|
317 |
+
|
318 |
+
def _get_clip_prompt_embeds(
|
319 |
+
self,
|
320 |
+
prompt: Union[str, List[str]],
|
321 |
+
num_images_per_prompt: int = 1,
|
322 |
+
device: Optional[torch.device] = None,
|
323 |
+
clip_skip: Optional[int] = None,
|
324 |
+
clip_model_index: int = 0,
|
325 |
+
):
|
326 |
+
device = device or self.execution_device
|
327 |
+
|
328 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
329 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
330 |
+
|
331 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
332 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
333 |
+
|
334 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
335 |
+
batch_size = len(prompt)
|
336 |
+
|
337 |
+
text_inputs = tokenizer(
|
338 |
+
prompt,
|
339 |
+
padding="max_length",
|
340 |
+
max_length=self.tokenizer_max_length,
|
341 |
+
truncation=True,
|
342 |
+
return_tensors="pt",
|
343 |
+
)
|
344 |
+
|
345 |
+
text_input_ids = text_inputs.input_ids
|
346 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
347 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
348 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
349 |
+
logger.warning(
|
350 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
351 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
352 |
+
)
|
353 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
354 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
355 |
+
|
356 |
+
if clip_skip is None:
|
357 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
358 |
+
else:
|
359 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
360 |
+
|
361 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
362 |
+
|
363 |
+
_, seq_len, _ = prompt_embeds.shape
|
364 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
365 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
366 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
367 |
+
|
368 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
369 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
370 |
+
|
371 |
+
return prompt_embeds, pooled_prompt_embeds
|
372 |
+
|
373 |
+
def encode_prompt(
|
374 |
+
self,
|
375 |
+
prompt: Union[str, List[str]],
|
376 |
+
prompt_2: Union[str, List[str]],
|
377 |
+
prompt_3: Union[str, List[str]],
|
378 |
+
device: Optional[torch.device] = None,
|
379 |
+
num_images_per_prompt: int = 1,
|
380 |
+
do_classifier_free_guidance: bool = True,
|
381 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
382 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
383 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
384 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
385 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
386 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
387 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
388 |
+
clip_skip: Optional[int] = None,
|
389 |
+
):
|
390 |
+
r"""
|
391 |
+
|
392 |
+
Args:
|
393 |
+
prompt (`str` or `List[str]`, *optional*):
|
394 |
+
prompt to be encoded
|
395 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
396 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
397 |
+
used in all text-encoders
|
398 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
399 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
400 |
+
used in all text-encoders
|
401 |
+
device: (`torch.device`):
|
402 |
+
torch device
|
403 |
+
num_images_per_prompt (`int`):
|
404 |
+
number of images that should be generated per prompt
|
405 |
+
do_classifier_free_guidance (`bool`):
|
406 |
+
whether to use classifier free guidance or not
|
407 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
408 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
409 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
410 |
+
less than `1`).
|
411 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
412 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
413 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
414 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
415 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
416 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
|
417 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
418 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
419 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
420 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
421 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
422 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
423 |
+
argument.
|
424 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
425 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
426 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
427 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
428 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
429 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
430 |
+
input argument.
|
431 |
+
clip_skip (`int`, *optional*):
|
432 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
433 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
434 |
+
"""
|
435 |
+
device = device or self.execution_device
|
436 |
+
|
437 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
438 |
+
if prompt is not None:
|
439 |
+
batch_size = len(prompt)
|
440 |
+
else:
|
441 |
+
batch_size = prompt_embeds.shape[0]
|
442 |
+
|
443 |
+
if prompt_embeds is None:
|
444 |
+
prompt_2 = prompt_2 or prompt
|
445 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
446 |
+
|
447 |
+
prompt_3 = prompt_3 or prompt
|
448 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
449 |
+
|
450 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
451 |
+
prompt=prompt,
|
452 |
+
device=device,
|
453 |
+
num_images_per_prompt=num_images_per_prompt,
|
454 |
+
clip_skip=clip_skip,
|
455 |
+
clip_model_index=0,
|
456 |
+
)
|
457 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
458 |
+
prompt=prompt_2,
|
459 |
+
device=device,
|
460 |
+
num_images_per_prompt=num_images_per_prompt,
|
461 |
+
clip_skip=clip_skip,
|
462 |
+
clip_model_index=1,
|
463 |
+
)
|
464 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
465 |
+
|
466 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
467 |
+
prompt=prompt_3,
|
468 |
+
num_images_per_prompt=num_images_per_prompt,
|
469 |
+
device=device,
|
470 |
+
)
|
471 |
+
|
472 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
473 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
474 |
+
)
|
475 |
+
|
476 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
477 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
478 |
+
|
479 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
480 |
+
negative_prompt = negative_prompt or ""
|
481 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
482 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
483 |
+
|
484 |
+
# normalize str to list
|
485 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
486 |
+
negative_prompt_2 = (
|
487 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
488 |
+
)
|
489 |
+
negative_prompt_3 = (
|
490 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
491 |
+
)
|
492 |
+
|
493 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
494 |
+
raise TypeError(
|
495 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
496 |
+
f" {type(prompt)}."
|
497 |
+
)
|
498 |
+
elif batch_size != len(negative_prompt):
|
499 |
+
raise ValueError(
|
500 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
501 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
502 |
+
" the batch size of `prompt`."
|
503 |
+
)
|
504 |
+
|
505 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
506 |
+
negative_prompt,
|
507 |
+
device=device,
|
508 |
+
num_images_per_prompt=num_images_per_prompt,
|
509 |
+
clip_skip=None,
|
510 |
+
clip_model_index=0,
|
511 |
+
)
|
512 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
513 |
+
negative_prompt_2,
|
514 |
+
device=device,
|
515 |
+
num_images_per_prompt=num_images_per_prompt,
|
516 |
+
clip_skip=None,
|
517 |
+
clip_model_index=1,
|
518 |
+
)
|
519 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
520 |
+
|
521 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
522 |
+
prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, device=device
|
523 |
+
)
|
524 |
+
|
525 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
526 |
+
negative_clip_prompt_embeds,
|
527 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
528 |
+
)
|
529 |
+
|
530 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
531 |
+
negative_pooled_prompt_embeds = torch.cat(
|
532 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
533 |
+
)
|
534 |
+
|
535 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
536 |
+
|
537 |
+
def check_inputs(
|
538 |
+
self,
|
539 |
+
prompt,
|
540 |
+
prompt_2,
|
541 |
+
prompt_3,
|
542 |
+
height,
|
543 |
+
width,
|
544 |
+
negative_prompt=None,
|
545 |
+
negative_prompt_2=None,
|
546 |
+
negative_prompt_3=None,
|
547 |
+
prompt_embeds=None,
|
548 |
+
negative_prompt_embeds=None,
|
549 |
+
pooled_prompt_embeds=None,
|
550 |
+
negative_pooled_prompt_embeds=None,
|
551 |
+
callback_on_step_end_tensor_inputs=None,
|
552 |
+
):
|
553 |
+
if height % 8 != 0 or width % 8 != 0:
|
554 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
555 |
+
|
556 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
557 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
558 |
+
):
|
559 |
+
raise ValueError(
|
560 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
561 |
+
)
|
562 |
+
|
563 |
+
if prompt is not None and prompt_embeds is not None:
|
564 |
+
raise ValueError(
|
565 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
566 |
+
" only forward one of the two."
|
567 |
+
)
|
568 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
569 |
+
raise ValueError(
|
570 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
571 |
+
" only forward one of the two."
|
572 |
+
)
|
573 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
574 |
+
raise ValueError(
|
575 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
576 |
+
" only forward one of the two."
|
577 |
+
)
|
578 |
+
elif prompt is None and prompt_embeds is None:
|
579 |
+
raise ValueError(
|
580 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
581 |
+
)
|
582 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
583 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
584 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
585 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
586 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
587 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
588 |
+
|
589 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
590 |
+
raise ValueError(
|
591 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
592 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
593 |
+
)
|
594 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
595 |
+
raise ValueError(
|
596 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
597 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
598 |
+
)
|
599 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
600 |
+
raise ValueError(
|
601 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
602 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
603 |
+
)
|
604 |
+
|
605 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
606 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
607 |
+
raise ValueError(
|
608 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
609 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
610 |
+
f" {negative_prompt_embeds.shape}."
|
611 |
+
)
|
612 |
+
|
613 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
614 |
+
raise ValueError(
|
615 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
616 |
+
)
|
617 |
+
|
618 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
619 |
+
raise ValueError(
|
620 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
621 |
+
)
|
622 |
+
|
623 |
+
def prepare_latents(
|
624 |
+
self,
|
625 |
+
batch_size,
|
626 |
+
num_channels_latents,
|
627 |
+
height,
|
628 |
+
width,
|
629 |
+
frames,
|
630 |
+
dtype,
|
631 |
+
device,
|
632 |
+
generator,
|
633 |
+
latents=None,
|
634 |
+
):
|
635 |
+
if latents is not None:
|
636 |
+
return latents.to(device=device, dtype=dtype)
|
637 |
+
#1, 60, 16, 32, 32
|
638 |
+
shape = (
|
639 |
+
batch_size,
|
640 |
+
frames,
|
641 |
+
num_channels_latents,
|
642 |
+
int(height) // self.vae_scale_factor,
|
643 |
+
int(width) // self.vae_scale_factor,
|
644 |
+
)
|
645 |
+
|
646 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
647 |
+
raise ValueError(
|
648 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
649 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
650 |
+
)
|
651 |
+
|
652 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
653 |
+
|
654 |
+
return latents
|
655 |
+
|
656 |
+
@property
|
657 |
+
def guidance_scale(self):
|
658 |
+
return self._guidance_scale
|
659 |
+
|
660 |
+
@property
|
661 |
+
def clip_skip(self):
|
662 |
+
return self._clip_skip
|
663 |
+
|
664 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
665 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
666 |
+
# corresponds to doing no classifier free guidance.
|
667 |
+
@property
|
668 |
+
def do_classifier_free_guidance(self):
|
669 |
+
return self._guidance_scale > 1
|
670 |
+
|
671 |
+
@property
|
672 |
+
def joint_attention_kwargs(self):
|
673 |
+
return self._joint_attention_kwargs
|
674 |
+
|
675 |
+
@property
|
676 |
+
def num_timesteps(self):
|
677 |
+
return self._num_timesteps
|
678 |
+
|
679 |
+
@property
|
680 |
+
def interrupt(self):
|
681 |
+
return self._interrupt
|
682 |
+
|
683 |
+
@torch.no_grad()
|
684 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
685 |
+
def __call__(
|
686 |
+
self,
|
687 |
+
prompt: Union[str, List[str]] = None,
|
688 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
689 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
690 |
+
height: Optional[int] = None,
|
691 |
+
width: Optional[int] = None,
|
692 |
+
frames: Optional[int] = None,
|
693 |
+
num_inference_steps: int = 28,
|
694 |
+
timesteps: List[int] = None,
|
695 |
+
guidance_scale: float = 7.0,
|
696 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
697 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
698 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
699 |
+
num_images_per_prompt: Optional[int] = 1,
|
700 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
701 |
+
latents: Optional[torch.FloatTensor] = None,
|
702 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
703 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
704 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
705 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
706 |
+
output_type: Optional[str] = "pil",
|
707 |
+
return_dict: bool = True,
|
708 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
709 |
+
clip_skip: Optional[int] = None,
|
710 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
711 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
712 |
+
):
|
713 |
+
r"""
|
714 |
+
Function invoked when calling the pipeline for generation.
|
715 |
+
|
716 |
+
Args:
|
717 |
+
prompt (`str` or `List[str]`, *optional*):
|
718 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
719 |
+
instead.
|
720 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
721 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
722 |
+
will be used instead
|
723 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
724 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
725 |
+
will be used instead
|
726 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
727 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
728 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
729 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
730 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
731 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
732 |
+
expense of slower inference.
|
733 |
+
timesteps (`List[int]`, *optional*):
|
734 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
735 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
736 |
+
passed will be used. Must be in descending order.
|
737 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
738 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
739 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
740 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
741 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
742 |
+
usually at the expense of lower image quality.
|
743 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
744 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
745 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
746 |
+
less than `1`).
|
747 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
748 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
749 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
750 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
751 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
752 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
753 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
754 |
+
The number of images to generate per prompt.
|
755 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
756 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
757 |
+
to make generation deterministic.
|
758 |
+
latents (`torch.FloatTensor`, *optional*):
|
759 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
760 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
761 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
762 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
763 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
764 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
765 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
766 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
767 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
768 |
+
argument.
|
769 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
770 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
771 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
772 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
773 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
774 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
775 |
+
input argument.
|
776 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
777 |
+
The output format of the generate image. Choose between
|
778 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
779 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
780 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
781 |
+
of a plain tuple.
|
782 |
+
joint_attention_kwargs (`dict`, *optional*):
|
783 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
784 |
+
`self.processor` in
|
785 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
786 |
+
callback_on_step_end (`Callable`, *optional*):
|
787 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
788 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
789 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
790 |
+
`callback_on_step_end_tensor_inputs`.
|
791 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
792 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
793 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
794 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
795 |
+
|
796 |
+
Examples:
|
797 |
+
|
798 |
+
Returns:
|
799 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
800 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
801 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
802 |
+
"""
|
803 |
+
|
804 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
805 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
806 |
+
frames = frames or 24
|
807 |
+
|
808 |
+
# 1. Check inputs. Raise error if not correct
|
809 |
+
self.check_inputs(
|
810 |
+
prompt,
|
811 |
+
prompt_2,
|
812 |
+
prompt_3,
|
813 |
+
height,
|
814 |
+
width,
|
815 |
+
negative_prompt=negative_prompt,
|
816 |
+
negative_prompt_2=negative_prompt_2,
|
817 |
+
negative_prompt_3=negative_prompt_3,
|
818 |
+
prompt_embeds=prompt_embeds,
|
819 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
820 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
821 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
822 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
823 |
+
)
|
824 |
+
|
825 |
+
self._guidance_scale = guidance_scale
|
826 |
+
self._clip_skip = clip_skip
|
827 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
828 |
+
self._interrupt = False
|
829 |
+
|
830 |
+
# 2. Define call parameters
|
831 |
+
if prompt is not None and isinstance(prompt, str):
|
832 |
+
batch_size = 1
|
833 |
+
elif prompt is not None and isinstance(prompt, list):
|
834 |
+
batch_size = len(prompt)
|
835 |
+
else:
|
836 |
+
batch_size = prompt_embeds.shape[0]
|
837 |
+
|
838 |
+
device = self.execution_device
|
839 |
+
|
840 |
+
|
841 |
+
(
|
842 |
+
prompt_embeds,
|
843 |
+
negative_prompt_embeds,
|
844 |
+
pooled_prompt_embeds,
|
845 |
+
negative_pooled_prompt_embeds,
|
846 |
+
) = self.encode_prompt(
|
847 |
+
prompt=prompt,
|
848 |
+
prompt_2=prompt_2,
|
849 |
+
prompt_3=prompt_3,
|
850 |
+
negative_prompt=negative_prompt,
|
851 |
+
negative_prompt_2=negative_prompt_2,
|
852 |
+
negative_prompt_3=negative_prompt_3,
|
853 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
854 |
+
prompt_embeds=prompt_embeds,
|
855 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
856 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
857 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
858 |
+
device=device,
|
859 |
+
clip_skip=self.clip_skip,
|
860 |
+
num_images_per_prompt=num_images_per_prompt,
|
861 |
+
)
|
862 |
+
|
863 |
+
if self.do_classifier_free_guidance:
|
864 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
865 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
866 |
+
|
867 |
+
# 4. Prepare timesteps
|
868 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
869 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
870 |
+
self._num_timesteps = len(timesteps)
|
871 |
+
|
872 |
+
# 5. Prepare latent variables
|
873 |
+
num_channels_latents = self.transformer.config.in_channels
|
874 |
+
latents = self.prepare_latents(
|
875 |
+
batch_size * num_images_per_prompt,
|
876 |
+
num_channels_latents,
|
877 |
+
height,
|
878 |
+
width,
|
879 |
+
frames,
|
880 |
+
prompt_embeds.dtype,
|
881 |
+
device,
|
882 |
+
generator,
|
883 |
+
latents,
|
884 |
+
)
|
885 |
+
|
886 |
+
# 6. Denoising loop
|
887 |
+
# with self.progress_bar(total=num_inference_steps) as progress_bar:
|
888 |
+
from tqdm import tqdm
|
889 |
+
for i, t in tqdm(enumerate(timesteps)):
|
890 |
+
if self.interrupt:
|
891 |
+
continue
|
892 |
+
|
893 |
+
# expand the latents if we are doing classifier free guidance
|
894 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
895 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
896 |
+
timestep = t.expand(latents.shape[0])
|
897 |
+
noise_pred_uncond = self.transformer(
|
898 |
+
hidden_states=latent_model_input[0,:].unsqueeze(0),
|
899 |
+
timestep=timestep,
|
900 |
+
encoder_hidden_states=prompt_embeds[0,:].unsqueeze(0),
|
901 |
+
pooled_projections=pooled_prompt_embeds[0,:].unsqueeze(0),
|
902 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
903 |
+
return_dict=False,
|
904 |
+
)[0]
|
905 |
+
|
906 |
+
noise_pred_text = self.transformer(
|
907 |
+
hidden_states=latent_model_input[1,:].unsqueeze(0),
|
908 |
+
timestep=timestep,
|
909 |
+
encoder_hidden_states=prompt_embeds[1,:].unsqueeze(0),
|
910 |
+
pooled_projections=pooled_prompt_embeds[1,:].unsqueeze(0),
|
911 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
912 |
+
return_dict=False,
|
913 |
+
)[0]
|
914 |
+
self._guidance_scale = 1 + guidance_scale * (
|
915 |
+
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
916 |
+
)
|
917 |
+
# perform guidance
|
918 |
+
if self.do_classifier_free_guidance:
|
919 |
+
# noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
920 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
921 |
+
|
922 |
+
# compute the previous noisy sample x_t -> x_t-1
|
923 |
+
latents_dtype = latents.dtype
|
924 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
925 |
+
|
926 |
+
if latents.dtype != latents_dtype:
|
927 |
+
if torch.backends.mps.is_available():
|
928 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
929 |
+
latents = latents.to(latents_dtype)
|
930 |
+
|
931 |
+
if callback_on_step_end is not None:
|
932 |
+
callback_kwargs = {}
|
933 |
+
for k in callback_on_step_end_tensor_inputs:
|
934 |
+
callback_kwargs[k] = locals()[k]
|
935 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
936 |
+
|
937 |
+
latents = callback_outputs.pop("latents", latents)
|
938 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
939 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
940 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
941 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
942 |
+
)
|
943 |
+
|
944 |
+
# call the callback, if provided
|
945 |
+
# if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
946 |
+
# progress_bar.update()
|
947 |
+
|
948 |
+
if XLA_AVAILABLE:
|
949 |
+
xm.mark_step()
|
950 |
+
|
951 |
+
# if output_type == "latent":
|
952 |
+
# image = latents
|
953 |
+
|
954 |
+
# else:
|
955 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
956 |
+
videos = []
|
957 |
+
for v_idx in range(latents.shape[1]):
|
958 |
+
image = self.vae.decode(latents[:,v_idx], return_dict=False)[0]
|
959 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
960 |
+
videos.append(image[0])
|
961 |
+
|
962 |
+
return videos
|
963 |
+
|
models/utils.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class RMSNorm(nn.Module):
|
6 |
+
"""
|
7 |
+
Initialize the RMSNorm normalization layer.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
dim (int): The dimension of the input tensor.
|
11 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
12 |
+
|
13 |
+
Attributes:
|
14 |
+
eps (float): A small value added to the denominator for numerical stability.
|
15 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
16 |
+
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
20 |
+
super().__init__()
|
21 |
+
self.eps = eps
|
22 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
23 |
+
|
24 |
+
def _norm(self, x: torch.Tensor):
|
25 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
26 |
+
|
27 |
+
def forward(self, x: torch.Tensor):
|
28 |
+
output = self._norm(x.float()).type_as(x)
|
29 |
+
return output * self.weight
|
30 |
+
|
31 |
+
def reset_parameters(self):
|
32 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
op_replace.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
try:
|
3 |
+
from apex.normalization import FusedLayerNorm
|
4 |
+
except ImportError as e:
|
5 |
+
try:
|
6 |
+
from xformers.triton import FusedLayerNorm
|
7 |
+
except ImportError as e:
|
8 |
+
FusedLayerNorm = None
|
9 |
+
|
10 |
+
|
11 |
+
def replace_all_layernorms(model):
|
12 |
+
if FusedLayerNorm is None:
|
13 |
+
print("WARNING: apex.normalization & xformers.triton.FusedLayerNorm is not found, \
|
14 |
+
skip using FusedLayerNorm")
|
15 |
+
return model
|
16 |
+
for name, module in model.named_children():
|
17 |
+
if isinstance(module, torch.nn.LayerNorm):
|
18 |
+
setattr(model, name, FusedLayerNorm(
|
19 |
+
module.normalized_shape, module.eps, module.elementwise_affine))
|
20 |
+
else:
|
21 |
+
replace_all_layernorms(module)
|
22 |
+
return model
|
23 |
+
|
24 |
+
|
25 |
+
def replace_all_groupnorms(model):
|
26 |
+
try:
|
27 |
+
from apex.contrib.group_norm import GroupNorm
|
28 |
+
except ImportError as e:
|
29 |
+
print("WARNING: apex.contrib.group_norm is not found, skip using apex groupnorm")
|
30 |
+
return model
|
31 |
+
for name, module in model.named_children():
|
32 |
+
if isinstance(module, torch.nn.GroupNorm):
|
33 |
+
setattr(model, name, GroupNorm(
|
34 |
+
module.num_groups, module.num_channels,
|
35 |
+
eps=module.eps, affine=module.affine))
|
36 |
+
else:
|
37 |
+
replace_all_groupnorms(module)
|
38 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
accelerate
|
3 |
+
transformers
|
4 |
+
gradio
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
torchdiffeq
|
8 |
+
click
|
9 |
+
einops
|
10 |
+
moviepy
|
11 |
+
sentencepiece
|
12 |
+
Pillow==9.5.0
|
utils.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imageio
|
2 |
+
import numpy as np
|
3 |
+
from typing import List
|
4 |
+
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
+
import subprocess
|
7 |
+
from time import sleep
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
from torch.distributed.fsdp import (
|
12 |
+
FullyShardedDataParallel as FSDP,
|
13 |
+
StateDictType, FullStateDictConfig,
|
14 |
+
)
|
15 |
+
from torch.distributed.checkpoint.state_dict import (
|
16 |
+
StateDictOptions,
|
17 |
+
get_model_state_dict,
|
18 |
+
get_optimizer_state_dict,
|
19 |
+
set_optimizer_state_dict
|
20 |
+
)
|
21 |
+
|
22 |
+
_INTRA_NODE_PROCESS_GROUP, _INTER_NODE_PROCESS_GROUP = None, None
|
23 |
+
_LOCAL_RANK, _LOCAL_WORLD_SIZE = -1, -1
|
24 |
+
|
25 |
+
def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes:
|
26 |
+
with BytesIO() as output_buffer:
|
27 |
+
# Save the first image
|
28 |
+
images[0].save(output_buffer,
|
29 |
+
format='GIF',
|
30 |
+
save_all=True,
|
31 |
+
append_images=images[1:],
|
32 |
+
duration=duration,
|
33 |
+
loop=0) # 0 means the GIF will loop indefinitely
|
34 |
+
|
35 |
+
# Get the byte array from the buffer
|
36 |
+
gif_bytes = output_buffer.getvalue()
|
37 |
+
return gif_bytes
|
38 |
+
|
39 |
+
|
40 |
+
def save_as_gif(images: List, file_path: str, duration: int = 1000):
|
41 |
+
with open(file_path, "wb") as f:
|
42 |
+
f.write(images_to_gif_bytes(images, duration))
|
43 |
+
|
44 |
+
|
45 |
+
def images_to_mp4_bytes(images: List[Image.Image], duration: float = 1000) -> bytes:
|
46 |
+
with BytesIO() as output_buffer:
|
47 |
+
with imageio.get_writer(output_buffer, format='mp4', fps=1 / (duration / 1000)) as writer:
|
48 |
+
for img in images:
|
49 |
+
writer.append_data(np.array(img))
|
50 |
+
mp4_bytes = output_buffer.getvalue()
|
51 |
+
return mp4_bytes
|
52 |
+
|
53 |
+
|
54 |
+
def save_as_mp4(images: List[Image.Image], file_path: str, duration: float = 1000):
|
55 |
+
with open(file_path, "wb") as f:
|
56 |
+
f.write(images_to_mp4_bytes(images, duration))
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def get_local_rank() -> int:
|
61 |
+
return _LOCAL_RANK
|
62 |
+
|
63 |
+
|
64 |
+
def get_local_world_size() -> int:
|
65 |
+
return _LOCAL_WORLD_SIZE
|
66 |
+
|
67 |
+
|
68 |
+
def _setup_dist_env_from_slurm(args):
|
69 |
+
while not os.environ.get("MASTER_ADDR", ""):
|
70 |
+
try:
|
71 |
+
os.environ["MASTER_ADDR"] = subprocess.check_output(
|
72 |
+
"sinfo -Nh -n %s | head -n 1 | awk '{print $1}'" %
|
73 |
+
os.environ['SLURM_NODELIST'],
|
74 |
+
shell=True,
|
75 |
+
).decode().strip()
|
76 |
+
except:
|
77 |
+
pass
|
78 |
+
sleep(1)
|
79 |
+
os.environ["MASTER_PORT"] = str(int(args.master_port)+1)
|
80 |
+
os.environ["RANK"] = os.environ["SLURM_PROCID"]
|
81 |
+
os.environ["WORLD_SIZE"] = os.environ["SLURM_NPROCS"]
|
82 |
+
os.environ["LOCAL_RANK"] = os.environ["SLURM_LOCALID"]
|
83 |
+
os.environ["LOCAL_WORLD_SIZE"] = os.environ["SLURM_NTASKS_PER_NODE"]
|
84 |
+
|
85 |
+
def init_process_groups(args):
|
86 |
+
if any([
|
87 |
+
x not in os.environ
|
88 |
+
for x in ["RANK", "WORLD_SIZE", "MASTER_PORT", "MASTER_ADDR"]
|
89 |
+
]):
|
90 |
+
_setup_dist_env_from_slurm(args)
|
91 |
+
|
92 |
+
dist.init_process_group("nccl")
|
93 |
+
torch.cuda.set_device(dist.get_rank() % torch.cuda.device_count())
|
94 |
+
|
95 |
+
global _LOCAL_RANK, _LOCAL_WORLD_SIZE
|
96 |
+
_LOCAL_RANK = int(os.environ["LOCAL_RANK"])
|
97 |
+
_LOCAL_WORLD_SIZE = int(os.environ["LOCAL_WORLD_SIZE"])
|
98 |
+
|
99 |
+
global _INTRA_NODE_PROCESS_GROUP, _INTER_NODE_PROCESS_GROUP
|
100 |
+
local_ranks, local_world_sizes = [torch.empty(
|
101 |
+
[dist.get_world_size()], dtype=torch.long, device="cuda"
|
102 |
+
) for _ in (0, 1)]
|
103 |
+
dist.all_gather_into_tensor(local_ranks, torch.tensor(get_local_rank(), device="cuda"))
|
104 |
+
dist.all_gather_into_tensor(local_world_sizes, torch.tensor(get_local_world_size(), device="cuda"))
|
105 |
+
local_ranks, local_world_sizes = local_ranks.tolist(), local_world_sizes.tolist()
|
106 |
+
|
107 |
+
node_ranks = [[0]]
|
108 |
+
for i in range(1, dist.get_world_size()):
|
109 |
+
if len(node_ranks[-1]) == local_world_sizes[i - 1]:
|
110 |
+
node_ranks.append([])
|
111 |
+
else:
|
112 |
+
assert local_world_sizes[i] == local_world_sizes[i - 1]
|
113 |
+
node_ranks[-1].append(i)
|
114 |
+
for ranks in node_ranks:
|
115 |
+
group = dist.new_group(ranks)
|
116 |
+
if dist.get_rank() in ranks:
|
117 |
+
assert _INTRA_NODE_PROCESS_GROUP is None
|
118 |
+
_INTRA_NODE_PROCESS_GROUP = group
|
119 |
+
assert _INTRA_NODE_PROCESS_GROUP is not None
|
120 |
+
|
121 |
+
if min(local_world_sizes) == max(local_world_sizes):
|
122 |
+
for i in range(get_local_world_size()):
|
123 |
+
group = dist.new_group(list(range(i, dist.get_world_size(), get_local_world_size())))
|
124 |
+
if i == get_local_rank():
|
125 |
+
assert _INTER_NODE_PROCESS_GROUP is None
|
126 |
+
_INTER_NODE_PROCESS_GROUP = group
|
127 |
+
assert _INTER_NODE_PROCESS_GROUP is not None
|
128 |
+
|
129 |
+
|
130 |
+
def get_intra_node_process_group():
|
131 |
+
assert _INTRA_NODE_PROCESS_GROUP is not None, \
|
132 |
+
"Intra-node process group is not initialized."
|
133 |
+
return _INTRA_NODE_PROCESS_GROUP
|
134 |
+
|
135 |
+
|
136 |
+
def get_inter_node_process_group():
|
137 |
+
assert _INTRA_NODE_PROCESS_GROUP is not None, \
|
138 |
+
"Intra- and inter-node process groups are not initialized."
|
139 |
+
return _INTER_NODE_PROCESS_GROUP
|
140 |
+
|
141 |
+
|
142 |
+
def save_model_fsdp_only(rank, model, output_folder, filename):
|
143 |
+
with FSDP.state_dict_type(
|
144 |
+
model,
|
145 |
+
StateDictType.FULL_STATE_DICT,
|
146 |
+
FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
147 |
+
):
|
148 |
+
consolidated_model_state_dict = model.state_dict()
|
149 |
+
if rank == 0:
|
150 |
+
torch.save(
|
151 |
+
consolidated_model_state_dict,
|
152 |
+
os.path.join(output_folder, filename),
|
153 |
+
)
|
154 |
+
del consolidated_model_state_dict
|
155 |
+
dist.barrier()
|
156 |
+
|
157 |
+
|
158 |
+
def save_model(rank, model, output_folder, filename):
|
159 |
+
state_dict = get_model_state_dict(
|
160 |
+
model,
|
161 |
+
options=StateDictOptions(
|
162 |
+
full_state_dict=True,
|
163 |
+
cpu_offload=True,
|
164 |
+
),
|
165 |
+
)
|
166 |
+
if rank == 0:
|
167 |
+
torch.save(state_dict, os.path.join(output_folder, filename))
|
168 |
+
del state_dict
|
169 |
+
dist.barrier()
|
170 |
+
|
171 |
+
|
172 |
+
def load_model(rank, model, output_folder, filename, strict=True, logger=None):
|
173 |
+
if rank == 0:
|
174 |
+
missing_keys, unexpected_keys = model.load_state_dict(
|
175 |
+
torch.load(os.path.join(output_folder, filename), map_location="cpu"),
|
176 |
+
strict=strict
|
177 |
+
)
|
178 |
+
if logger is not None:
|
179 |
+
logger.info("Model initialization result:")
|
180 |
+
logger.info(f" Missing keys: {missing_keys}")
|
181 |
+
logger.info(f" Unexpected keys: {unexpected_keys}")
|
182 |
+
dist.barrier()
|
183 |
+
|
184 |
+
|
185 |
+
def save_optimizer_fsdp_only(model, optimizer, output_folder, filename):
|
186 |
+
with FSDP.state_dict_type(
|
187 |
+
model,
|
188 |
+
StateDictType.LOCAL_STATE_DICT,
|
189 |
+
):
|
190 |
+
torch.save(optimizer.state_dict(), os.path.join(output_folder, filename))
|
191 |
+
dist.barrier()
|
192 |
+
|
193 |
+
|
194 |
+
def load_optimizer_fsdp_only(optimizer, output_folder, filename):
|
195 |
+
optimizer.load_state_dict(
|
196 |
+
torch.load(os.path.join(output_folder, filename), map_location="cpu")
|
197 |
+
)
|
198 |
+
dist.barrier()
|
199 |
+
|
200 |
+
|
201 |
+
def save_optimizer(model, optimizer, output_folder, filename):
|
202 |
+
state_dict = get_optimizer_state_dict(
|
203 |
+
model,
|
204 |
+
optimizer,
|
205 |
+
options=StateDictOptions(
|
206 |
+
full_state_dict=False,
|
207 |
+
cpu_offload=True,
|
208 |
+
),
|
209 |
+
)
|
210 |
+
torch.save(state_dict, os.path.join(output_folder, filename))
|
211 |
+
dist.barrier()
|
212 |
+
|
213 |
+
|
214 |
+
def load_optimizer(model, optimizer, output_folder, filename):
|
215 |
+
state_dict = torch.load(os.path.join(output_folder, filename), map_location="cpu")
|
216 |
+
set_optimizer_state_dict(
|
217 |
+
model,
|
218 |
+
optimizer,
|
219 |
+
optim_state_dict=state_dict,
|
220 |
+
options=StateDictOptions(
|
221 |
+
full_state_dict=False,
|
222 |
+
strict=True
|
223 |
+
),
|
224 |
+
)
|
225 |
+
dist.barrier()
|