File size: 8,873 Bytes
c44b109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import clip
import os
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import sys
from typing import Tuple, List, Union, Optional
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from tqdm import tqdm, trange
import skimage.io as io
import PIL.Image
from IPython.display import Image 


N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]


D = torch.device

def get_device(device_id: int) -> D:
    if not torch.cuda.is_available():
        return CPU
    device_id = min(torch.cuda.device_count() - 1, device_id)
    return torch.device(f'cuda:{device_id}')


CUDA = get_device

current_directory = os.getcwd()
save_path = os.path.join(os.path.dirname(current_directory), "pretrained_models")
os.makedirs(save_path, exist_ok=True)
model_path = os.path.join(save_path, 'model_wieghts.pt')


class MLP(nn.Module):

    def forward(self, x: T) -> T:
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) -1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)

class ClipCaptionModel(nn.Module):

    #@functools.lru_cache #FIXME
    def get_dummy_token(self, batch_size: int, device: D) -> T:
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
        embedding_text = self.gpt.transformer.wte(tokens)
        prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
        #print(embedding_text.size()) #torch.Size([5, 67, 768])
        #print(prefix_projections.size()) #torch.Size([5, 1, 768])
        embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
        return out

    def __init__(self, prefix_length: int, prefix_size: int = 512):
        super(ClipCaptionModel, self).__init__()
        self.prefix_length = prefix_length
        self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        if prefix_length > 10:  # not enough memory
            self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
        else:
            self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))


class ClipCaptionPrefix(ClipCaptionModel):

    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()
        return self
    
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
                  entry_length=67, temperature=1., stop_token: str = '.'):

    model.eval()
    stop_token_index = tokenizer.encode(stop_token)[0]
    tokens = None
    scores = None
    device = next(model.parameters()).device
    seq_lengths = torch.ones(beam_size, device=device)
    is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
    with torch.no_grad():
        if embed is not None:
            generated = embed
        else:
            if tokens is None:
                tokens = torch.tensor(tokenizer.encode(prompt))
                tokens = tokens.unsqueeze(0).to(device)
                generated = model.gpt.transformer.wte(tokens)
        for i in range(entry_length):
            outputs = model.gpt(inputs_embeds=generated)
            logits = outputs.logits
            logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
            logits = logits.softmax(-1).log()
            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                generated = generated.expand(beam_size, *generated.shape[1:])
                next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
                if tokens is None:
                    tokens = next_tokens
                else:
                    tokens = tokens.expand(beam_size, *tokens.shape[1:])
                    tokens = torch.cat((tokens, next_tokens), dim=1)
            else:
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                tokens = tokens[next_tokens_source]
                tokens = torch.cat((tokens, next_tokens), dim=1)
                generated = generated[next_tokens_source]
                scores = scores_sum_average * seq_lengths
                is_stopped = is_stopped[next_tokens_source]
            next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
            generated = torch.cat((generated, next_token_embed), dim=1)
            is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
            if is_stopped.all():
                break
    scores = scores / seq_lengths
    output_list = tokens.cpu().numpy()
    output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
    order = scores.argsort(descending=True)
    output_texts = [output_texts[i] for i in order]
    return output_texts

def generate2(
        model,
        tokenizer,
        tokens=None,
        prompt=None,
        embed=None,
        entry_count=1,
        entry_length=67,  # maximum number of words
        top_p=0.8,
        temperature=1.,
        stop_token: str = '.',
):
    model.eval()
    generated_num = 0
    generated_list = []
    stop_token_index = tokenizer.encode(stop_token)[0]
    filter_value = -float("Inf")
    device = next(model.parameters()).device

    with torch.no_grad():

        for entry_idx in trange(entry_count):
            if embed is not None:
                generated = embed
            else:
                if tokens is None:
                    tokens = torch.tensor(tokenizer.encode(prompt))
                    tokens = tokens.unsqueeze(0).to(device)

                generated = model.gpt.transformer.wte(tokens)

            for i in range(entry_length):

                outputs = model.gpt(inputs_embeds=generated)
                logits = outputs.logits
                logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
                                                    ..., :-1
                                                    ].clone()
                sorted_indices_to_remove[..., 0] = 0

                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[:, indices_to_remove] = filter_value
                next_token = torch.argmax(logits, -1).unsqueeze(0)
                next_token_embed = model.gpt.transformer.wte(next_token)
                if tokens is None:
                    tokens = next_token
                else:
                    tokens = torch.cat((tokens, next_token), dim=1)
                generated = torch.cat((generated, next_token_embed), dim=1)
                if stop_token_index == next_token.item():
                    break

            output_list = list(tokens.squeeze().cpu().numpy())
            output_text = tokenizer.decode(output_list)
            generated_list.append(output_text)

    return generated_list[0]