Spaces:
Sleeping
Sleeping
Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import clip
|
2 |
+
import os
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as nnf
|
7 |
+
import sys
|
8 |
+
from typing import Tuple, List, Union, Optional
|
9 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
|
10 |
+
from tqdm import tqdm, trange
|
11 |
+
import skimage.io as io
|
12 |
+
import PIL.Image
|
13 |
+
from IPython.display import Image
|
14 |
+
|
15 |
+
|
16 |
+
N = type(None)
|
17 |
+
V = np.array
|
18 |
+
ARRAY = np.ndarray
|
19 |
+
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
|
20 |
+
VS = Union[Tuple[V, ...], List[V]]
|
21 |
+
VN = Union[V, N]
|
22 |
+
VNS = Union[VS, N]
|
23 |
+
T = torch.Tensor
|
24 |
+
TS = Union[Tuple[T, ...], List[T]]
|
25 |
+
TN = Optional[T]
|
26 |
+
TNS = Union[Tuple[TN, ...], List[TN]]
|
27 |
+
TSN = Optional[TS]
|
28 |
+
TA = Union[T, ARRAY]
|
29 |
+
|
30 |
+
|
31 |
+
D = torch.device
|
32 |
+
|
33 |
+
def get_device(device_id: int) -> D:
|
34 |
+
if not torch.cuda.is_available():
|
35 |
+
return CPU
|
36 |
+
device_id = min(torch.cuda.device_count() - 1, device_id)
|
37 |
+
return torch.device(f'cuda:{device_id}')
|
38 |
+
|
39 |
+
|
40 |
+
CUDA = get_device
|
41 |
+
|
42 |
+
current_directory = os.getcwd()
|
43 |
+
save_path = os.path.join(os.path.dirname(current_directory), "pretrained_models")
|
44 |
+
os.makedirs(save_path, exist_ok=True)
|
45 |
+
model_path = os.path.join(save_path, 'model_wieghts.pt')
|
46 |
+
|
47 |
+
|
48 |
+
class MLP(nn.Module):
|
49 |
+
|
50 |
+
def forward(self, x: T) -> T:
|
51 |
+
return self.model(x)
|
52 |
+
|
53 |
+
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
|
54 |
+
super(MLP, self).__init__()
|
55 |
+
layers = []
|
56 |
+
for i in range(len(sizes) -1):
|
57 |
+
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
|
58 |
+
if i < len(sizes) - 2:
|
59 |
+
layers.append(act())
|
60 |
+
self.model = nn.Sequential(*layers)
|
61 |
+
|
62 |
+
class ClipCaptionModel(nn.Module):
|
63 |
+
|
64 |
+
#@functools.lru_cache #FIXME
|
65 |
+
def get_dummy_token(self, batch_size: int, device: D) -> T:
|
66 |
+
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
|
67 |
+
|
68 |
+
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
|
69 |
+
embedding_text = self.gpt.transformer.wte(tokens)
|
70 |
+
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
|
71 |
+
#print(embedding_text.size()) #torch.Size([5, 67, 768])
|
72 |
+
#print(prefix_projections.size()) #torch.Size([5, 1, 768])
|
73 |
+
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
|
74 |
+
if labels is not None:
|
75 |
+
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
76 |
+
labels = torch.cat((dummy_token, tokens), dim=1)
|
77 |
+
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
78 |
+
return out
|
79 |
+
|
80 |
+
def __init__(self, prefix_length: int, prefix_size: int = 512):
|
81 |
+
super(ClipCaptionModel, self).__init__()
|
82 |
+
self.prefix_length = prefix_length
|
83 |
+
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
|
84 |
+
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
85 |
+
if prefix_length > 10: # not enough memory
|
86 |
+
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
|
87 |
+
else:
|
88 |
+
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))
|
89 |
+
|
90 |
+
|
91 |
+
class ClipCaptionPrefix(ClipCaptionModel):
|
92 |
+
|
93 |
+
def parameters(self, recurse: bool = True):
|
94 |
+
return self.clip_project.parameters()
|
95 |
+
|
96 |
+
def train(self, mode: bool = True):
|
97 |
+
super(ClipCaptionPrefix, self).train(mode)
|
98 |
+
self.gpt.eval()
|
99 |
+
return self
|
100 |
+
|
101 |
+
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
|
102 |
+
entry_length=67, temperature=1., stop_token: str = '.'):
|
103 |
+
|
104 |
+
model.eval()
|
105 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
106 |
+
tokens = None
|
107 |
+
scores = None
|
108 |
+
device = next(model.parameters()).device
|
109 |
+
seq_lengths = torch.ones(beam_size, device=device)
|
110 |
+
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
|
111 |
+
with torch.no_grad():
|
112 |
+
if embed is not None:
|
113 |
+
generated = embed
|
114 |
+
else:
|
115 |
+
if tokens is None:
|
116 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
117 |
+
tokens = tokens.unsqueeze(0).to(device)
|
118 |
+
generated = model.gpt.transformer.wte(tokens)
|
119 |
+
for i in range(entry_length):
|
120 |
+
outputs = model.gpt(inputs_embeds=generated)
|
121 |
+
logits = outputs.logits
|
122 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
123 |
+
logits = logits.softmax(-1).log()
|
124 |
+
if scores is None:
|
125 |
+
scores, next_tokens = logits.topk(beam_size, -1)
|
126 |
+
generated = generated.expand(beam_size, *generated.shape[1:])
|
127 |
+
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
|
128 |
+
if tokens is None:
|
129 |
+
tokens = next_tokens
|
130 |
+
else:
|
131 |
+
tokens = tokens.expand(beam_size, *tokens.shape[1:])
|
132 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
133 |
+
else:
|
134 |
+
logits[is_stopped] = -float(np.inf)
|
135 |
+
logits[is_stopped, 0] = 0
|
136 |
+
scores_sum = scores[:, None] + logits
|
137 |
+
seq_lengths[~is_stopped] += 1
|
138 |
+
scores_sum_average = scores_sum / seq_lengths[:, None]
|
139 |
+
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
|
140 |
+
next_tokens_source = next_tokens // scores_sum.shape[1]
|
141 |
+
seq_lengths = seq_lengths[next_tokens_source]
|
142 |
+
next_tokens = next_tokens % scores_sum.shape[1]
|
143 |
+
next_tokens = next_tokens.unsqueeze(1)
|
144 |
+
tokens = tokens[next_tokens_source]
|
145 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
146 |
+
generated = generated[next_tokens_source]
|
147 |
+
scores = scores_sum_average * seq_lengths
|
148 |
+
is_stopped = is_stopped[next_tokens_source]
|
149 |
+
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
|
150 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
151 |
+
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
|
152 |
+
if is_stopped.all():
|
153 |
+
break
|
154 |
+
scores = scores / seq_lengths
|
155 |
+
output_list = tokens.cpu().numpy()
|
156 |
+
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
|
157 |
+
order = scores.argsort(descending=True)
|
158 |
+
output_texts = [output_texts[i] for i in order]
|
159 |
+
return output_texts
|
160 |
+
|
161 |
+
def generate2(
|
162 |
+
model,
|
163 |
+
tokenizer,
|
164 |
+
tokens=None,
|
165 |
+
prompt=None,
|
166 |
+
embed=None,
|
167 |
+
entry_count=1,
|
168 |
+
entry_length=67, # maximum number of words
|
169 |
+
top_p=0.8,
|
170 |
+
temperature=1.,
|
171 |
+
stop_token: str = '.',
|
172 |
+
):
|
173 |
+
model.eval()
|
174 |
+
generated_num = 0
|
175 |
+
generated_list = []
|
176 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
177 |
+
filter_value = -float("Inf")
|
178 |
+
device = next(model.parameters()).device
|
179 |
+
|
180 |
+
with torch.no_grad():
|
181 |
+
|
182 |
+
for entry_idx in trange(entry_count):
|
183 |
+
if embed is not None:
|
184 |
+
generated = embed
|
185 |
+
else:
|
186 |
+
if tokens is None:
|
187 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
188 |
+
tokens = tokens.unsqueeze(0).to(device)
|
189 |
+
|
190 |
+
generated = model.gpt.transformer.wte(tokens)
|
191 |
+
|
192 |
+
for i in range(entry_length):
|
193 |
+
|
194 |
+
outputs = model.gpt(inputs_embeds=generated)
|
195 |
+
logits = outputs.logits
|
196 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
197 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
198 |
+
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
|
199 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
200 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
201 |
+
..., :-1
|
202 |
+
].clone()
|
203 |
+
sorted_indices_to_remove[..., 0] = 0
|
204 |
+
|
205 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
206 |
+
logits[:, indices_to_remove] = filter_value
|
207 |
+
next_token = torch.argmax(logits, -1).unsqueeze(0)
|
208 |
+
next_token_embed = model.gpt.transformer.wte(next_token)
|
209 |
+
if tokens is None:
|
210 |
+
tokens = next_token
|
211 |
+
else:
|
212 |
+
tokens = torch.cat((tokens, next_token), dim=1)
|
213 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
214 |
+
if stop_token_index == next_token.item():
|
215 |
+
break
|
216 |
+
|
217 |
+
output_list = list(tokens.squeeze().cpu().numpy())
|
218 |
+
output_text = tokenizer.decode(output_list)
|
219 |
+
generated_list.append(output_text)
|
220 |
+
|
221 |
+
return generated_list[0]
|