File size: 13,473 Bytes
ff0340e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import gradio as gr
from PIL import Image
import glob

import io
import argparse
import inspect
import os
import random
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np

import torch
import torch.utils.checkpoint

from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms

from tuneavideo.models.unet_mv2d_condition import UNetMV2DConditionModel
from tuneavideo.models.unet_mv2d_ref import UNetMV2DRefModel
from tuneavideo.models.PoseGuider import PoseGuider
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.util import shifted_noise
from einops import rearrange
import PIL
from PIL import Image
from torchvision.utils import save_image
import json
import cv2

import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from rm_anime_bg.cli import get_mask, SCALE

from huggingface_hub import hf_hub_download, list_repo_files

repo_id = "zjpshadow/CharacterGen"
all_files = list_repo_files(repo_id, revision="main")

for file in all_files:
    if os.path.exists("../" + file):
        continue
    if file.startswith("2D_Stage"):
        hf_hub_download(repo_id, file, local_dir="../")

class rm_bg_api:

    def __init__(self, force_cpu: Optional[bool] = True):
        session_infer_path = hf_hub_download(
            repo_id="skytnt/anime-seg", filename="isnetis.onnx",
        )
        providers: list[str] = ["CPUExecutionProvider"]
        if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
            providers = ["CUDAExecutionProvider"]

        self.session_infer = rt.InferenceSession(
            session_infer_path, providers=providers,
        )

    def remove_background(
        self,
        imgs: list[np.ndarray],
        alpha_min: float,
        alpha_max: float,
    ) -> list:
        process_imgs = []
        for img in imgs:
            # CHANGE to RGB
            img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
            mask = get_mask(self.session_infer, img)

            mask[mask < alpha_min] = 0.0  # type: ignore
            mask[mask > alpha_max] = 1.0  # type: ignore

            img_after = (mask * img + SCALE * (1 - mask)).astype(np.uint8)  # type: ignore
            mask = (mask * SCALE).astype(np.uint8)  # type: ignore
            img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
            mask = mask.repeat(3, axis=2)
            process_imgs.append(Image.fromarray(img_after))
        return process_imgs

check_min_version("0.24.0")

logger = get_logger(__name__, log_level="INFO")

def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

def get_bg_color(bg_color):
    if bg_color == 'white':
        bg_color = np.array([1., 1., 1.], dtype=np.float32)
    elif bg_color == 'black':
        bg_color = np.array([0., 0., 0.], dtype=np.float32)
    elif bg_color == 'gray':
        bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
    elif bg_color == 'random':
        bg_color = np.random.rand(3)
    elif isinstance(bg_color, float):
        bg_color = np.array([bg_color] * 3, dtype=np.float32)
    else:
        raise NotImplementedError
    return bg_color

def process_image(image, totensor):
    if not image.mode == "RGBA":
        image = image.convert("RGBA")

    # Find non-transparent pixels
    non_transparent = np.nonzero(np.array(image)[..., 3])
    min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
    min_y, max_y = non_transparent[0].min(), non_transparent[0].max()    
    image = image.crop((min_x, min_y, max_x, max_y))

    # paste to center
    max_dim = max(image.width, image.height)
    max_height = max_dim
    max_width = int(max_dim / 3 * 2)
    new_image = Image.new("RGBA", (max_width, max_height))
    left = (max_width - image.width) // 2
    top = (max_height - image.height) // 2
    new_image.paste(image, (left, top))

    image = new_image.resize((512, 768), resample=PIL.Image.BICUBIC)
    image = np.array(image)
    image = image.astype(np.float32) / 255.
    assert image.shape[-1] == 4  # RGBA
    alpha = image[..., 3:4]
    bg_color = get_bg_color("gray")
    image = image[..., :3] * alpha + bg_color * (1 - alpha)
    # save image
    # new_image = Image.fromarray((image * 255).astype(np.uint8))
    # new_image.save("input.png")
    return totensor(image)

class Inference_API:

    def __init__(self):
        self.validation_pipeline = None

    @torch.no_grad()
    def inference(self, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
                    pose_guider=None, use_noise=True, use_shifted_noise=False, noise_d=256, crop=False, seed=100, timestep=20):
        set_seed(seed)
        # Get the validation pipeline
        if self.validation_pipeline is None:
            noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
            if use_shifted_noise:
                print(f"enable shifted noise for {val_height} to {noise_d}")
                betas = shifted_noise(noise_scheduler.betas, image_d=val_height, noise_d=noise_d)
                noise_scheduler.betas = betas
                noise_scheduler.alphas = 1 - betas
                noise_scheduler.alphas_cumprod = torch.cumprod(noise_scheduler.alphas, dim=0)
            self.validation_pipeline = TuneAVideoPipeline(
                vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
                scheduler=noise_scheduler
            )
            self.validation_pipeline.enable_vae_slicing()
            self.validation_pipeline.set_progress_bar_config(disable=True)

        totensor = transforms.ToTensor()

        metas = json.load(open("./material/pose.json", "r"))
        cameras = []
        pose_images = []
        input_path = "./material"
        for lm in metas:
            cameras.append(torch.tensor(np.array(lm[0]).reshape(4, 4).transpose(1,0)[:3, :4]).reshape(-1))
            if not crop:
                pose_images.append(totensor(np.asarray(Image.open(os.path.join(input_path, lm[1])).resize(
                    (val_height, val_width), resample=PIL.Image.BICUBIC)).astype(np.float32) / 255.))
            else:
                pose_image = Image.open(os.path.join(input_path, lm[1]))
                crop_area = (128, 0, 640, 768)
                pose_images.append(totensor(np.array(pose_image.crop(crop_area)).astype(np.float32)) / 255.)
        camera_matrixs = torch.stack(cameras).unsqueeze(0).to("cuda")
        pose_imgs_in = torch.stack(pose_images).to("cuda")
        prompts = "high quality, best quality"
        prompt_ids = tokenizer(
            prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
            return_tensors="pt"
        ).input_ids[0]

        # (B*Nv, 3, H, W)
        B = 1
        weight_dtype = torch.bfloat16
        imgs_in = process_image(input_image, totensor)
        imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
                
        with torch.autocast("cuda", dtype=weight_dtype):
            imgs_in = imgs_in.to("cuda")
            # B*Nv images
            out = self.validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator, 
                                        num_inference_steps=timestep,
                                        camera_matrixs=camera_matrixs.to(weight_dtype), prompt_ids=prompt_ids, 
                                        height=val_height, width=val_width, unet_condition_type=unet_condition_type, 
                                        pose_guider=None, pose_image=pose_imgs_in, use_noise=use_noise, 
                                        use_shifted_noise=use_shifted_noise, **validation).videos
            out = rearrange(out, "B C f H W -> (B f) C H W", f=validation.video_length)

        image_outputs = []
        for bs in range(4):
            img_buf = io.BytesIO()
            save_image(out[bs], img_buf, format='PNG')
            img_buf.seek(0)
            img = Image.open(img_buf)
            image_outputs.append(img)
        torch.cuda.empty_cache()
        return image_outputs 

@torch.no_grad()
def main(
    pretrained_model_path: str,
    image_encoder_path: str,
    ckpt_dir: str,
    validation: Dict,
    local_crossattn: bool = True,
    unet_from_pretrained_kwargs=None,
    unet_condition_type=None,
    use_pose_guider=False,
    use_noise=True,
    use_shifted_noise=False,
    noise_d=256
):
    *_, config = inspect.getargvalues(inspect.currentframe())

    device = "cuda"

    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(image_encoder_path)
    feature_extractor = CLIPImageProcessor()
    vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
    unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
    ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
    if use_pose_guider:
        pose_guider = PoseGuider(noise_latent_channels=4).to("cuda")
    else:
        pose_guider = None

    unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model.bin"), map_location="cpu")
    if use_pose_guider:
        pose_guider_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
        ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_2.bin"), map_location="cpu")
        pose_guider.load_state_dict(pose_guider_params)
    else:
        ref_unet_params = torch.load(os.path.join(ckpt_dir, "pytorch_model_1.bin"), map_location="cpu")
    unet.load_state_dict(unet_params)
    ref_unet.load_state_dict(ref_unet_params)

    weight_dtype = torch.float16

    text_encoder.to(device, dtype=weight_dtype)
    image_encoder.to(device, dtype=weight_dtype)
    vae.to(device, dtype=weight_dtype)
    ref_unet.to(device, dtype=weight_dtype)
    unet.to(device, dtype=weight_dtype)

    vae.requires_grad_(False)
    unet.requires_grad_(False)
    ref_unet.requires_grad_(False)

    generator = torch.Generator(device="cuda")
    inferapi = Inference_API()
    remove_api = rm_bg_api()
    def gen4views(image, width, height, seed, timestep, remove_bg):
        if remove_bg:
            image = remove_api.remove_background(
                imgs=[np.array(image)],
                alpha_min=0.1,
                alpha_max=0.9,
            )[0]
        return inferapi.inference(
            image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder, pretrained_model_path,
            generator, validation, width, height, unet_condition_type,
            pose_guider=pose_guider, use_noise=use_noise, use_shifted_noise=use_shifted_noise, noise_d=noise_d,
            crop=True, seed=seed, timestep=timestep
        )

    with gr.Blocks() as demo:
        gr.Markdown("# [SIGGRAPH'24] CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Calibration")
        gr.Markdown("# 2D Stage: One Image to Four Views of Character Image")
        gr.Markdown("**Please Upload the Image without background, and the pictures uploaded should preferably be full-body frontal photos.**")
        with gr.Row():
            with gr.Column():
                img_input = gr.Image(type="pil", label="Upload Image(without background)", image_mode="RGBA", width=768, height=512)
                gr.Examples(
                    label="Example Images",
                    examples=glob.glob("./material/examples/*.png"),
                    inputs=[img_input]
                )
                with gr.Row():
                    width_input = gr.Number(label="Width", value=512)
                    height_input = gr.Number(label="Height", value=768)
                    seed_input = gr.Number(label="Seed", value=2333)
                    remove_bg = gr.Checkbox(label="Remove Background (with algorithm)", value=False)
                timestep = gr.Slider(minimum=10, maximum=70, step=1, value=40, label="Timesteps")
            with gr.Column():
                button = gr.Button(value="Generate")
                output = gr.Gallery(label="4 views of Character Image")
        
        button.click(
            fn=gen4views,
            inputs=[img_input, width_input, height_input, seed_input, timestep, remove_bg],
            outputs=[output]
        )

    demo.launch()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/infer.yaml")
    args = parser.parse_args()

    main(**OmegaConf.load(args.config))