Spaces:
Sleeping
Sleeping
File size: 1,273 Bytes
f5510ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import pip
pip.main(['install', 'torch'])
pip.main(['install', 'transformers'])
import torch
import torch.nn as nn
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
def load_model(model_name):
# model_name = "Unggi/hate_speech_bert"
# model
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# tokenizer..
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
def inference(prompt):
model_name = "Unggi/ko_hate_speech_KcELECTRA" #"Unggi/hate_speech_bert"
model, tokenizer = load_model(
model_name = model_name
)
inputs = tokenizer(
prompt,
return_tensors="pt"
)
with torch.no_grad():
logits = model(**inputs).logits
# for binary classification
sigmoid = nn.Sigmoid()
bi_prob = sigmoid(logits)
predicted_class_id = bi_prob.argmax().item()
class_id = model.config.id2label[predicted_class_id]
return "class_id: " + str(class_id) + "\n" + "clean_prob: " + str(bi_prob[0][0].item()) + "\n" + "unclean_prob: " + str(bi_prob[0][1].item())
demo = gr.Interface(
fn=inference,
inputs="text",
outputs="text", #return 값
).launch() |