Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pip
|
2 |
+
pip.main(['install', 'torch'])
|
3 |
+
pip.main(['install', 'transformers'])
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import gradio as gr
|
8 |
+
import transformers
|
9 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
10 |
+
|
11 |
+
def load_model(model_name):
|
12 |
+
# model_name = "Unggi/hate_speech_bert"
|
13 |
+
# model
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
15 |
+
# tokenizer..
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
|
21 |
+
def inference(prompt):
|
22 |
+
model_name = "Unggi/ko_hate_speech_KcELECTRA" #"Unggi/hate_speech_bert"
|
23 |
+
|
24 |
+
model, tokenizer = load_model(
|
25 |
+
model_name = model_name
|
26 |
+
)
|
27 |
+
|
28 |
+
inputs = tokenizer(
|
29 |
+
prompt,
|
30 |
+
return_tensors="pt"
|
31 |
+
)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
logits = model(**inputs).logits
|
35 |
+
|
36 |
+
# for binary classification
|
37 |
+
sigmoid = nn.Sigmoid()
|
38 |
+
bi_prob = sigmoid(logits)
|
39 |
+
|
40 |
+
predicted_class_id = bi_prob.argmax().item()
|
41 |
+
class_id = model.config.id2label[predicted_class_id]
|
42 |
+
|
43 |
+
return "class_id: " + str(class_id) + "\n" + "clean_prob: " + str(bi_prob[0][0].item()) + "\n" + "unclean_prob: " + str(bi_prob[0][1].item())
|
44 |
+
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=inference,
|
47 |
+
inputs="text",
|
48 |
+
outputs="text", #return 값
|
49 |
+
).launch()
|