Spaces:
Sleeping
Sleeping
File size: 9,570 Bytes
46719a3 a1ed477 c66588a e38ccc6 46719a3 0400d63 c0206c3 2276dbd c0206c3 46719a3 775b8c3 2276dbd 46719a3 a1ed477 46719a3 53144e5 46719a3 882e722 46719a3 a1ed477 46719a3 882e722 46719a3 8e4278b 7324e32 7cc54d0 7324e32 8e4278b 46719a3 7324e32 46719a3 a1ed477 46719a3 a1ed477 46719a3 493782c 46719a3 b786efe 46719a3 b786efe 7d21b47 9a0e806 dbffabb 46719a3 dbffabb 46719a3 dbffabb 46719a3 dbffabb acf9d02 46719a3 dbffabb 46719a3 dbffabb 46719a3 a1ed477 dbffabb 46719a3 dbffabb 9a0e806 a1ed477 7324e32 8e4278b 7324e32 8e4278b 7324e32 8e4278b 7324e32 8e4278b a9d1c68 8e4278b a9d1c68 25f4c1b 8e4278b 7324e32 a1ed477 e38ccc6 8cac5f3 f6c598f e38ccc6 a1ed477 46719a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import ee
import geemap
import json
import geopandas as gpd
import streamlit as st
import pandas as pd
import geojson
from shapely.geometry import Polygon, MultiPolygon, shape, Point
from io import BytesIO
import fiona
from shapely import wkb
from shapely.ops import transform
import geemap.foliumap as geemapfolium
from streamlit_folium import st_folium
# Enable fiona driver
fiona.drvsupport.supported_drivers['LIBKML'] = 'rw'
#Intialize EE library
# Access secret
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with the secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='in793-aq-nb-24330048')
# Functions
def convert_to_2d_geometry(geom):
if geom is None:
return None
elif geom.has_z:
return transform(lambda x, y, z: (x, y), geom)
else:
return geom
def validate_KML_file(gdf):
if gdf.empty:
return {
'corner_points': None,
'area': None,
'perimeter': None,
'is_single_polygon': False}
polygon_info = {}
# Check if it's a single polygon or multipolygon
if isinstance(gdf.iloc[0].geometry, Polygon) and len(gdf)==1:
polygon_info['is_single_polygon'] = True
polygon = convert_to_2d_geometry(gdf.iloc[0].geometry)
# Calculate corner points in GCS projection
polygon_info['corner_points'] = [
(polygon.bounds[0], polygon.bounds[1]),
(polygon.bounds[2], polygon.bounds[1]),
(polygon.bounds[2], polygon.bounds[3]),
(polygon.bounds[0], polygon.bounds[3])
]
# Calculate Centroids in GCS projection
polygon_info['centroid'] = polygon.centroid.coords[0]
# Calculate area and perimeter in EPSG:7761 projection
# It is a local projection defined for Gujarat as per NNRMS
polygon = gdf.to_crs(epsg=7761).geometry.iloc[0]
polygon_info['area'] = polygon.area
polygon_info['perimeter'] = polygon.length
else:
polygon_info['is_single_polygon'] = False
polygon_info['corner_points'] = None
polygon_info['area'] = None
polygon_info['perimeter'] = None
polygon_info['centroid'] = None
ValueError("Input must be a single Polygon.")
return polygon_info
# Calculate NDVI as Normalized Index
def reduce_zonal_ndvi(image, ee_object):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
image = image.addBands(ndvi)
image = image.select('NDVI')
reduced = image.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=ee_object.geometry(),
scale=10,
maxPixels=1e12
)
return image.set(reduced)
# Calculate NDVI
def calculate_NDVI(image):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
return ndvi
# Get Zonal NDVI for Year on Year Profile
def get_zonal_ndviYoY(collection, ee_object):
ndvi_collection = collection.map(calculate_NDVI)
max_ndvi = ndvi_collection.max()
reduced_max_ndvi = max_ndvi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=ee_object.geometry(),
scale=10,
maxPixels=1e12)
return reduced_max_ndvi.get('NDVI').getInfo()
# Get Zonal NDVI
def get_zonal_ndvi(collection, geom_ee_object):
reduced_collection = collection.map(lambda image: reduce_zonal_ndvi(image, ee_object=geom_ee_object))
stats_list = reduced_collection.aggregate_array('NDVI').getInfo()
filenames = reduced_collection.aggregate_array('system:index').getInfo()
dates = [f.split("_")[0].split('T')[0] for f in reduced_collection.aggregate_array('system:index').getInfo()]
df = pd.DataFrame({'NDVI': stats_list, 'Date': dates, 'Imagery': filenames})
return df
# put title in center
st.markdown("""
<style>
h1 {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
st.title("Mean NDVI Calculator")
# get the start and end date from the user
col = st.columns(2)
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
# Check if start and end dates are valid
if start_date>end_date:
st.stop()
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
# Get the geojson file from the user
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
if uploaded_file is not None:
try:
if uploaded_file.name.endswith("kml"):
gdf = gpd.read_file(BytesIO(uploaded_file.read()), driver='LIBKML')
elif uploaded_file.name.endswith("geojson"):
gdf = gpd.read_file(uploaded_file)
except Exception as e:
st.write('ValueError: "Input must be a valid KML file."')
st.stop()
# Validate KML File
polygon_info = validate_KML_file(gdf)
if polygon_info["is_single_polygon"]==True:
st.write("Uploaded KML file has single polygon geometry.")
st.write("It has bounds as {0:.6f}, {1:.6f}, {2:.6f}, and {3:.6f}.".format(
polygon_info['corner_points'][0][0],
polygon_info['corner_points'][0][1],
polygon_info['corner_points'][2][0],
polygon_info['corner_points'][2][1]
))
st.write("It has centroid at ({0:.6f}, {1:.6f}).".format(polygon_info['centroid'][0], polygon_info['centroid'][1]))
st.write("It has area of {:.2f} ha.".format(polygon_info['area']/10000))
st.write("It has perimeter of {:.2f} meters.".format(polygon_info['perimeter']))
#Change geometry of polygon 3D to 2D for ee
gdf.loc[0, "geometry"] = convert_to_2d_geometry(gdf.iloc[0].geometry)
#Read KML file
geom_ee_object = ee.FeatureCollection(json.loads(gdf.to_json()))
# Add buffer of 100m to ee_object
buffered_ee_object = geom_ee_object.map(lambda feature: feature.buffer(100))
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
# Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
df_geom = get_zonal_ndvi(collection.filterBounds(geom_ee_object), geom_ee_object)
df_buffered_geom = get_zonal_ndvi(collection.filterBounds(buffered_ee_object), buffered_ee_object)
# Merge both Zonalstats and create resultant dataframe
resultant_df = pd.merge(df_geom, df_buffered_geom, on='Date', how='inner')
resultant_df = resultant_df.rename(columns={'NDVI_x': 'AvgNDVI_Inside', 'NDVI_y': 'Avg_NDVI_Buffer', 'Imagery_x': 'Imagery'})
resultant_df['Ratio'] = resultant_df['AvgNDVI_Inside'] / resultant_df['Avg_NDVI_Buffer']
resultant_df.drop(columns=['Imagery_y'], inplace=True)
# Re-order the columns of the resultant dataframe
resultant_df = resultant_df[['Date', 'Imagery', 'AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Ratio']]
# Write the final table
st.write(resultant_df)
# plot the time series
st.write("Time Series Plot")
st.line_chart(resultant_df[['AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Date']].set_index('Date'))
####### YoY Profile ########
start_year = 2019
end_year = 2023
max_ndvi_geoms = []
max_ndvi_buffered_geoms = []
for year in range(start_year, end_year+1):
# Construct start and end dates for every year
start_ddmm = str(year)+pd.to_datetime(start_date).strftime("-%m-%d")
end_ddmm = str(year)+pd.to_datetime(end_date).strftime("-%m-%d")
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_ddmm, end_ddmm)).select(['B4', 'B8'])
# Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
max_ndvi_geoms.append(get_zonal_ndviYoY(collection.filterBounds(geom_ee_object), geom_ee_object))
max_ndvi_buffered_geoms.append(get_zonal_ndviYoY(collection.filterBounds(buffered_ee_object), buffered_ee_object))
# Create a DataFrame for YoY profile
yoy_df = pd.DataFrame({'Year': list(range(start_year, end_year+1)), 'NDVI_Inside': max_ndvi_geoms, 'NDVI_Buffer': max_ndvi_buffered_geoms})
yoy_df['Ratio'] = yoy_df['NDVI_Inside'] / yoy_df['NDVI_Buffer']
# plot the time series
st.write("Year on Year Plot using Maximum NDVI Composite (computed for given duration)")
st.line_chart(yoy_df[['NDVI_Inside', 'NDVI_Buffer', 'Ratio', 'Year']].set_index('Year'))
# Visualize map on ESRI basemap
st.write("Map Visualization")
m = geemapfolium.Map(center=polygon_info['centroid'], zoom=14)
# Center the map and display the image.
m.addLayer(geom_ee_object, {}, 'KML Original')
m.addLayer(buffered_ee_object, {}, 'KML Buffered')
st_folium(m)
else:
st.write('ValueError: "Input must have single polygon geometry"')
st.write(gdf)
st.stop()
|