Spaces:
Sleeping
Sleeping
UjjwalKGupta
commited on
Commit
·
46719a3
1
Parent(s):
1676df6
Add Zonal Statistics
Browse files- app.py +197 -0
- requirement.txt +0 -0
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import ee
|
3 |
+
import geemap
|
4 |
+
import json
|
5 |
+
import geopandas as gpd
|
6 |
+
import streamlit as st
|
7 |
+
import pandas as pd
|
8 |
+
import geojson
|
9 |
+
from shapely.geometry import Polygon, MultiPolygon, shape, Point
|
10 |
+
from io import BytesIO
|
11 |
+
import fiona
|
12 |
+
|
13 |
+
|
14 |
+
# Enable fiona driver
|
15 |
+
fiona.drvsupport.supported_drivers['LIBKML'] = 'rw'
|
16 |
+
|
17 |
+
#Intialize EE library
|
18 |
+
# Error in EE Authentication
|
19 |
+
# ee_credentials = os.environ.get("EE")
|
20 |
+
# os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
21 |
+
# with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
22 |
+
# f.write(ee_credentials)
|
23 |
+
# ee.Initialize()
|
24 |
+
|
25 |
+
# Functions
|
26 |
+
def convert_to_2d_geometry(geom): #Handles Polygon Only
|
27 |
+
if geom is None:
|
28 |
+
return None
|
29 |
+
elif geom.has_z:
|
30 |
+
# Extract exterior coordinates and convert to 2D
|
31 |
+
exterior_coords = geom.exterior.coords[:] # Get all coordinates of the exterior ring
|
32 |
+
exterior_coords_2d = [(x, y) for x, y, *_ in exterior_coords] # Keep only the x and y coordinates, ignoring z
|
33 |
+
|
34 |
+
# Handle interior rings (holes) if any
|
35 |
+
interior_coords_2d = []
|
36 |
+
for interior in geom.interiors:
|
37 |
+
interior_coords = interior.coords[:]
|
38 |
+
interior_coords_2d.append([(x, y) for x, y, *_ in interior_coords])
|
39 |
+
|
40 |
+
# Create a new Polygon with 2D coordinates
|
41 |
+
return type(geom)(exterior_coords_2d, interior_coords_2d)
|
42 |
+
else:
|
43 |
+
return geom
|
44 |
+
|
45 |
+
def validate_KML_file(gdf):
|
46 |
+
# try:
|
47 |
+
# gdf = gpd.read_file(BytesIO(uploaded_file.read()), driver='KML')
|
48 |
+
# except Exception as e:
|
49 |
+
# ValueError("Input must be a valid KML file.")
|
50 |
+
|
51 |
+
if gdf.empty:
|
52 |
+
return {
|
53 |
+
'corner_points': None,
|
54 |
+
'area': None,
|
55 |
+
'perimeter': None,
|
56 |
+
'is_single_polygon': False}
|
57 |
+
|
58 |
+
polygon_info = {}
|
59 |
+
|
60 |
+
# Check if it's a single polygon or multipolygon
|
61 |
+
if isinstance(gdf.iloc[0].geometry, Polygon):
|
62 |
+
polygon_info['is_single_polygon'] = True
|
63 |
+
|
64 |
+
polygon = convert_to_2d_geometry(gdf.geometry.iloc[0])
|
65 |
+
|
66 |
+
# Calculate corner points in GCS projection
|
67 |
+
polygon_info['corner_points'] = [
|
68 |
+
(polygon.bounds[0], polygon.bounds[1]),
|
69 |
+
(polygon.bounds[2], polygon.bounds[1]),
|
70 |
+
(polygon.bounds[2], polygon.bounds[3]),
|
71 |
+
(polygon.bounds[0], polygon.bounds[3])
|
72 |
+
]
|
73 |
+
|
74 |
+
# Calculate Centroids in GCS projection
|
75 |
+
polygon_info['centroid'] = polygon.centroid.coords[0]
|
76 |
+
|
77 |
+
# Calculate area and perimeter in EPSG:7761 projection
|
78 |
+
# It is a local projection defined for Gujarat as per NNRMS
|
79 |
+
polygon = gdf.to_crs(epsg=7761).geometry.iloc[0]
|
80 |
+
polygon_info['area'] = polygon.area
|
81 |
+
polygon_info['perimeter'] = polygon.length
|
82 |
+
|
83 |
+
else:
|
84 |
+
polygon_info['is_single_polygon'] = False
|
85 |
+
polygon_info['corner_points'] = None
|
86 |
+
polygon_info['area'] = None
|
87 |
+
polygon_info['perimeter'] = None
|
88 |
+
polygon_info['centroid'] = None
|
89 |
+
ValueError("Input must be a single Polygon.")
|
90 |
+
|
91 |
+
return polygon_info
|
92 |
+
|
93 |
+
# Calculate NDVI as Normalized Index
|
94 |
+
def reduce_zonal_ndvi(image, ee_object):
|
95 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
96 |
+
image = image.addBands(ndvi)
|
97 |
+
image = image.select('NDVI')
|
98 |
+
reduced = image.reduceRegion(
|
99 |
+
reducer=ee.Reducer.mean(),
|
100 |
+
geometry=ee_object.geometry(),
|
101 |
+
scale=10,
|
102 |
+
maxPixels=1e12
|
103 |
+
)
|
104 |
+
return image.set(reduced)
|
105 |
+
|
106 |
+
# Get Zonal NDVI
|
107 |
+
def get_zonal_ndvi(collection, geom_ee_object):
|
108 |
+
reduced_collection = collection.map(lambda image: reduce_zonal_ndvi(image, ee_object=geom_ee_object))
|
109 |
+
stats_list = reduced_collection.aggregate_array('NDVI').getInfo()
|
110 |
+
filenames = reduced_collection.aggregate_array('system:index').getInfo()
|
111 |
+
dates = [f.split("_")[0].split('T')[0] for f in reduced_collection.aggregate_array('system:index').getInfo()]
|
112 |
+
df = pd.DataFrame({'NDVI': stats_list, 'Date': dates, 'Imagery': filenames})
|
113 |
+
return df
|
114 |
+
|
115 |
+
# put title in center
|
116 |
+
st.markdown("""
|
117 |
+
<style>
|
118 |
+
h1 {
|
119 |
+
text-align: center;
|
120 |
+
}
|
121 |
+
</style>
|
122 |
+
""", unsafe_allow_html=True)
|
123 |
+
|
124 |
+
st.title("Mean NDVI Calculator")
|
125 |
+
|
126 |
+
# get the start and end date from the user
|
127 |
+
col = st.columns(2)
|
128 |
+
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
|
129 |
+
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
|
130 |
+
start_date = start_date.strftime("%Y-%m-%d")
|
131 |
+
end_date = end_date.strftime("%Y-%m-%d")
|
132 |
+
|
133 |
+
max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
|
134 |
+
|
135 |
+
# Get the geojson file from the user
|
136 |
+
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
if uploaded_file is not None:
|
141 |
+
try:
|
142 |
+
if uploaded_file.name.endswith("kml"):
|
143 |
+
gdf = gpd.read_file(BytesIO(uploaded_file.read()), driver='LIBKML')
|
144 |
+
elif uploaded_file.name.endswith("geojson"):
|
145 |
+
gdf = gpd.read_file(uploaded_file)
|
146 |
+
except Exception as e:
|
147 |
+
st.write('ValueError: "Input must be a valid KML file."')
|
148 |
+
st.stop()
|
149 |
+
|
150 |
+
# Validate KML File
|
151 |
+
polygon_info = validate_KML_file(gdf)
|
152 |
+
|
153 |
+
if polygon_info["is_single_polygon"]==True:
|
154 |
+
st.write("Uploaded KML file has single geometry.")
|
155 |
+
st.write("It has bounds as {0:.6f}, {1:.6f}, {2:.6f}, and {3:.6f}.".format(
|
156 |
+
polygon_info['corner_points'][0][0],
|
157 |
+
polygon_info['corner_points'][0][1],
|
158 |
+
polygon_info['corner_points'][2][0],
|
159 |
+
polygon_info['corner_points'][2][1]
|
160 |
+
))
|
161 |
+
st.write("It has centroid at ({0:.6f}, {1:.6f}).".format(polygon_info['centroid'][0], polygon_info['centroid'][1]))
|
162 |
+
st.write("It has area of {:.2f} meter squared.".format(polygon_info['area']))
|
163 |
+
st.write("It has perimeter of {:.2f} meters.".format(polygon_info['perimeter']))
|
164 |
+
|
165 |
+
# Read KML file
|
166 |
+
# geom_ee_object = ee.FeatureCollection(json.loads(gdf.to_json()))
|
167 |
+
|
168 |
+
# # Add buffer of 100m to ee_object
|
169 |
+
# buffered_ee_object = geom_ee_object.map(lambda feature: feature.buffer(100))
|
170 |
+
|
171 |
+
# # Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
|
172 |
+
# collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
|
173 |
+
|
174 |
+
# # Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
|
175 |
+
# df_geom = get_zonal_ndvi(collection, geom_ee_object)
|
176 |
+
# df_buffered_geom = get_zonal_ndvi(collection, buffered_ee_object)
|
177 |
+
|
178 |
+
# # Merge both Zonalstats and create resultant dataframe
|
179 |
+
# resultant_df = pd.merge(df_geom, df_buffered_geom, on='Date', how='inner')
|
180 |
+
# resultant_df = resultant_df.rename(columns={'NDVI_x': 'AvgNDVI_Inside', 'NDVI_y': 'Avg_NDVI_Buffer', 'Imagery_x': 'Imagery'})
|
181 |
+
# resultant_df['Ratio'] = resultant_df['AvgNDVI_Inside'] / resultant_df['Avg_NDVI_Buffer']
|
182 |
+
# resultant_df.drop(columns=['Imagery_y'], inplace=True)
|
183 |
+
|
184 |
+
# # Re-order the columns of the resultant dataframe
|
185 |
+
# resultant_df = resultant_df[['Date', 'Imagery', 'AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Ratio']]
|
186 |
+
|
187 |
+
# st.write(resultant_df)
|
188 |
+
|
189 |
+
# # plot the time series
|
190 |
+
# st.write("Time Series Plot")
|
191 |
+
# st.line_chart(resultant_df.set_index('Date'))
|
192 |
+
|
193 |
+
else:
|
194 |
+
st.write('ValueError: "Input must have single polygon geometry"')
|
195 |
+
st.write(gdf)
|
196 |
+
st.stop()
|
197 |
+
|
requirement.txt
ADDED
File without changes
|