Spaces:
Sleeping
Sleeping
File size: 1,662 Bytes
162172f 4050244 162172f 4050244 162172f 4050244 162172f 4050244 05467dd 162172f 4050244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model once
model_name = "HuggingFaceTB/SmolLM-1.7B"
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define a list of five different tokenizers to use
tokenizer_names = [
"HuggingFaceTB/SmolLM-1.7B", # Model's default tokenizer
"gpt2", # GPT-2 tokenizer
"distilbert-base-uncased", # DistilBERT tokenizer
"bert-base-uncased", # BERT tokenizer
"roberta-base" # RoBERTa tokenizer
]
# Load all the tokenizers
tokenizers = {name: AutoTokenizer.from_pretrained(name) for name in tokenizer_names}
def generate_responses(prompt, selected_tokenizers):
responses = {}
for name in selected_tokenizers:
tokenizer = tokenizers.get(name)
if tokenizer:
try:
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
responses[name] = response
except Exception as e:
responses[name] = f"Error: {str(e)}"
return responses
# Gradio interface setup with checkboxes for tokenizers
interface = gr.Interface(
fn=generate_responses,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
gr.CheckboxGroup(choices=tokenizer_names, label="Select tokenizers to use")
],
outputs=gr.JSON(),
title="Tokenizer Comparison",
description="Compare model outputs with different tokenizers"
)
# Launch the Gradio interface
interface.launch() |