File size: 1,189 Bytes
0255c8f 7f8f5d6 0255c8f 7f8f5d6 0255c8f 7f8f5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import speech_recognition as sr
from pydub import AudioSegment
# Initialize the recognizer
recognizer = sr.Recognizer()
def transcribe_audio(audio):
try:
# Load the audio and convert to WAV format if necessary
audio_data = AudioSegment.from_file(audio)
audio_data.export("audio.wav", format="wav")
# Use recognizer to transcribe the audio
with sr.AudioFile("audio.wav") as source:
audio_content = recognizer.record(source)
transcription = recognizer.recognize_google(audio_content)
return transcription
except Exception as e:
return f"Error: {str(e)}"
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Lecture Note Transcription App")
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload or Record Lecture Audio")
output_text = gr.Textbox(label="Transcription", lines=10)
submit_button = gr.Button("Transcribe")
# Link the transcribe function to Gradio components
submit_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[output_text])
# Launch the Gradio app
demo.launch() |