File size: 18,119 Bytes
4ea97dc 061f36e 4ea97dc 061f36e 4ea97dc 05755c2 4ea97dc 05755c2 4ea97dc 05755c2 4ea97dc 05755c2 4ea97dc 061f36e 4ea97dc 061f36e 4ea97dc 7363746 4ea97dc 7363746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import os
import io
import json
import math
import tempfile
from pathlib import Path
from typing import List, Tuple, Dict
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import gradio as gr
# ---- Parsers ----
from docx import Document
import traceback
# ---- Embeddings ----
# We try sentence-transformers. If unavailable (or offline), we fall back to HashingVectorizer.
from sklearn.feature_extraction.text import HashingVectorizer, TfidfVectorizer
from sklearn.decomposition import PCA
# Optional import guarded for environments without torch/models
_ST_MODEL = None
def _load_st_model():
global _ST_MODEL
if _ST_MODEL is not None:
return _ST_MODEL
try:
from sentence_transformers import SentenceTransformer
# A small, reliable model
_ST_MODEL = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
return _ST_MODEL
except Exception as e:
return None
def _resolve_file_input(file_obj):
"""Return (bytes_io, display_name) for a variety of Gradio/HF file input shapes.
Supports: tempfile objects, dicts with 'name'/'path'/'data', raw path strings, or bytes.
"""
import io, os
# 1) Dict shape (some Gradio environments)
if isinstance(file_obj, dict):
# Prefer an on-disk path if present
for key in ("path", "name"):
p = file_obj.get(key)
if isinstance(p, str) and os.path.exists(p):
with open(p, "rb") as f:
return io.BytesIO(f.read()), os.path.basename(p)
# Raw bytes in 'data'
data = file_obj.get("data")
if isinstance(data, (bytes, bytearray)):
return io.BytesIO(bytes(data)), file_obj.get("orig_name", "upload.docx")
# 2) Tempfile-like object
if hasattr(file_obj, "read") and hasattr(file_obj, "name"):
try:
file_obj.seek(0)
content = file_obj.read()
if isinstance(content, (bytes, bytearray)):
return io.BytesIO(content), os.path.basename(getattr(file_obj, "name", "upload.docx"))
except Exception:
pass
# Fallback: open by path
p = getattr(file_obj, "name", None)
if isinstance(p, str) and os.path.exists(p):
with open(p, "rb") as f:
return io.BytesIO(f.read()), os.path.basename(p)
# 3) Path string
if isinstance(file_obj, str) and os.path.exists(file_obj):
with open(file_obj, "rb") as f:
import os
return io.BytesIO(f.read()), os.path.basename(file_obj)
# 4) Raw bytes
if isinstance(file_obj, (bytes, bytearray)):
return io.BytesIO(bytes(file_obj)), "upload.docx"
# Unknown shape
return None, "upload.docx"
def read_docx_any(file_obj) -> List[str]:
bio, _ = _resolve_file_input(file_obj)
if bio is None:
raise ValueError("Could not read uploaded .docx file; unsupported input shape.")
doc = Document(bio)
paras = [p.text.strip() for p in doc.paragraphs]
paras = [p for p in paras if p and not p.isspace()]
return paras
def _basic_sentence_split(text: str) -> List[str]:
# Lightweight sentence split without external downloads
# Splits on '.', '?', '!' and line breaks, keeping reasonable length.
import re
rough = re.split(r'[\n\r]+|(?<=[\.\!\?])\s+', text.strip())
out = []
for s in rough:
s = s.strip()
if len(s) > 0:
out.append(s)
return out
def paragraphs_to_units(paras: List[str], mode: str = "paragraphs") -> List[str]:
if mode == "paragraphs":
return paras
elif mode == "sentences":
units = []
for p in paras:
units.extend(_basic_sentence_split(p))
return units
else:
return paras
def embed_texts(texts: List[str], prefer_sentence_transformer: bool = True) -> Tuple[np.ndarray, str]:
"""
Returns L2-normalized embeddings [N, d] and a string describing the backend.
Tries SentenceTransformer; if not available, falls back to HashingVectorizer.
"""
texts = [t if isinstance(t, str) else str(t) for t in texts]
if prefer_sentence_transformer:
model = _load_st_model()
if model is not None:
try:
vecs = model.encode(texts, batch_size=32, show_progress_bar=False, convert_to_numpy=True, normalize_embeddings=True)
return vecs.astype(np.float32), "sentence-transformers/all-MiniLM-L6-v2"
except Exception as e:
pass
# Fallback: HashingVectorizer + l2 normalize
hv = HashingVectorizer(n_features=768, alternate_sign=False, norm=None)
X = hv.transform(texts)
# Convert sparse to dense carefully (for small docs; fine for demo)
vecs = X.toarray().astype(np.float32)
# L2 normalize
norms = np.linalg.norm(vecs, axis=1, keepdims=True) + 1e-9
vecs = vecs / norms
return vecs, "HashingVectorizer(768d) fallback"
# ---- CHR Core ----
def softmax(x, axis=-1):
x = x - np.max(x, axis=axis, keepdims=True)
ex = np.exp(x)
return ex / (np.sum(ex, axis=axis, keepdims=True) + 1e-9)
def global_range_entropy(p: np.ndarray) -> float:
"""
p: [N, K] soft assignments.
m_j = mean_i p_ij
H_g = - sum_j m_j log m_j
"""
m = p.mean(axis=0) # [K]
m_safe = np.clip(m, 1e-12, None)
return float(-(m_safe * np.log(m_safe)).sum())
def soft_slab_entropy(z: np.ndarray, U: np.ndarray, bins: int = 8, tau: float = 5.0) -> float:
"""
z: [N, d] normalized embeddings
U: [K, d] anchor directions (assumed normalized)
Returns average entropy across anchors of a soft histogram over projected coordinates.
"""
# Projections
t = z @ U.T # [N, K]
K = U.shape[0]
Hs = []
for j in range(K):
tj = t[:, j]
tmin, tmax = float(tj.min()), float(tj.max())
if not np.isfinite(tmin) or not np.isfinite(tmax) or tmax - tmin < 1e-6:
Hs.append(0.0)
continue
centers = np.linspace(tmin, tmax, bins)
# Soft assignment to bins via RBF(-tau * (t - c)^2)
# [N, bins]
dist2 = (tj[:, None] - centers[None, :]) ** 2
weights = softmax(-tau * dist2, axis=1)
hist = weights.mean(axis=0) # [bins]
hist = np.clip(hist, 1e-12, None)
H = float(-(hist * np.log(hist)).sum())
Hs.append(H)
return float(np.mean(Hs)) if len(Hs) > 0 else 0.0
def kmeans_plus_plus_init(z: np.ndarray, K: int, rng: np.random.RandomState) -> np.ndarray:
# Returns K unit vectors chosen by k-means++ over cosine distance.
# Hardened against negative/NaN probabilities via clipping and uniform fallbacks.
N, d = z.shape
inds = []
# Pick first randomly
inds.append(rng.randint(0, N))
centers = [z[inds[0]]]
# Distances to nearest center: cosine distance = 1 - cos(theta)
cos0 = np.clip(z @ centers[0], -1.0, 1.0)
d2 = 1.0 - cos0
d2 = np.clip(d2, 1e-12, None)
for _ in range(1, K):
s = d2.sum()
if not np.isfinite(s) or s <= 0:
probs = np.full(N, 1.0 / N)
else:
probs = d2 / s
probs = np.clip(probs, 0.0, None)
s2 = probs.sum()
if s2 <= 0 or not np.isfinite(s2):
probs = np.full(N, 1.0 / N)
else:
probs = probs / s2
next_idx = rng.choice(N, p=probs)
inds.append(next_idx)
centers.append(z[next_idx])
cos_new = np.clip(z @ z[next_idx], -1.0, 1.0)
d2 = np.minimum(d2, 1.0 - cos_new)
d2 = np.clip(d2, 1e-12, None)
U = np.stack(centers, axis=0)
U = U / (np.linalg.norm(U, axis=1, keepdims=True) + 1e-9)
return U
def chr_optimize(z: np.ndarray, K: int = 8, iters: int = 30, beta: float = 12.0, bins: int = 8, tau: float = 5.0, seed: int = 42):
"""
Unsupervised CHR optimizer:
- Initialize K anchor directions U via k-means++ on cosine distance.
- Iterate:
p_ij = softmax(beta * z_i · U_j)
U_j = normalize( sum_i p_ij * z_i )
Returns final U, p, trajectories of global entropy and slab entropy.
"""
rng = np.random.RandomState(seed)
N, d = z.shape
U = kmeans_plus_plus_init(z, K, rng) if N >= K else np.pad(z, ((0, max(0, K - N)), (0, 0)), mode='wrap')[:K]
# Normalize
U = U / (np.linalg.norm(U, axis=1, keepdims=True) + 1e-9)
# Initial measures
logits0 = beta * (z @ U.T) # [N, K]
p0 = softmax(logits0, axis=1)
Hg0 = global_range_entropy(p0)
Hs0 = soft_slab_entropy(z, U, bins=bins, tau=tau)
Hg_traj = [Hg0]
Hs_traj = [Hs0]
for _ in range(iters):
logits = beta * (z @ U.T) # [N, K]
p = softmax(logits, axis=1) # [N, K]
# Update anchors as weighted means
numer = p.T @ z # [K, d]
# Avoid empty
denom = p.sum(axis=0)[:, None] + 1e-9
U = numer / denom
# Normalize
U = U / (np.linalg.norm(U, axis=1, keepdims=True) + 1e-9)
Hg = global_range_entropy(p)
Hs = soft_slab_entropy(z, U, bins=bins, tau=tau)
Hg_traj.append(Hg)
Hs_traj.append(Hs)
# Final assignments
logits = beta * (z @ U.T)
p = softmax(logits, axis=1)
return U, p, np.array(Hg_traj), np.array(Hs_traj)
def compute_mhep(Hg_traj: np.ndarray, Hs_traj: np.ndarray, K: int, bins: int, w_g: float = 0.7, w_s: float = 0.3) -> float:
"""
Maximum Harvestable Energy Potential (MHEP) as a percentage.
Normalizes entropy drops by theoretical maxima (log K for global, log bins for slab).
"""
if len(Hg_traj) < 2 or len(Hs_traj) < 2:
return 0.0
maxHg = math.log(max(K, 2))
maxHs = math.log(max(bins, 2))
drop_g = max(0.0, float(Hg_traj[0] - Hg_traj[-1])) / (maxHg + 1e-9)
drop_s = max(0.0, float(Hs_traj[0] - Hs_traj[-1])) / (maxHs + 1e-9)
score = 100.0 * (w_g * drop_g + w_s * drop_s)
# Clamp to [0, 100]
return float(np.clip(score, 0.0, 100.0))
def structure_outputs(texts: List[str], z: np.ndarray, U: np.ndarray, p: np.ndarray) -> Tuple[pd.DataFrame, Dict[int, str]]:
"""
Create a structured table sorted by constellation and radial order,
and summarize each constellation with top keywords.
"""
N, d = z.shape
K = U.shape[0]
# Hard labels for convenience
labels = p.argmax(axis=1)
# Radial coordinate per anchor
proj = z @ U.T # [N, K]
radial = proj[np.arange(N), labels]
df = pd.DataFrame({
"constellation": labels.astype(int),
"radial_order": radial,
"text": texts,
"char_len": [len(t) for t in texts],
"word_count": [len(t.split()) for t in texts],
"confidence": p.max(axis=1)
})
# Sort by constellation then decreasing radial (farther along the ray first)
df = df.sort_values(by=["constellation", "radial_order"], ascending=[True, False]).reset_index(drop=True)
# Constellation summaries via TF-IDF per cluster
summaries = {}
for j in range(K):
cluster_texts = [texts[i] for i in range(N) if labels[i] == j]
if len(cluster_texts) == 0:
summaries[j] = "(empty)"
continue
# Build a simple corpus: cluster as doc, others as background
corpus = [" ".join(cluster_texts), " ".join([texts[i] for i in range(N) if labels[i] != j])]
try:
tfidf = TfidfVectorizer(max_features=1000, ngram_range=(1,2), stop_words="english")
X = tfidf.fit_transform(corpus)
vocab = np.array(tfidf.get_feature_names_out())
# Take top terms for the cluster doc (row 0) relative to background (row 1)
scores = (X[0].toarray()[0] - X[1].toarray()[0])
idx = np.argsort(-scores)[:8]
top_terms = [vocab[i] for i in idx if scores[i] > 0]
summaries[j] = ", ".join(top_terms[:8]) if top_terms else "(generic)"
except Exception as e:
summaries[j] = "(summary unavailable)"
return df, summaries
def pca_plot(z: np.ndarray, U: np.ndarray, labels: np.ndarray, out_path: str):
"""
2D PCA plot of points colored by constellation, with anchor stars.
NOTE: We do not set any explicit colors or styles per instruction.
"""
if z.shape[1] > 2:
pca = PCA(n_components=2, random_state=0)
Z2 = pca.fit_transform(z)
U2 = pca.transform(U)
else:
Z2 = z
U2 = U
plt.figure(figsize=(6, 5))
# Points
plt.scatter(Z2[:, 0], Z2[:, 1], s=14, alpha=0.8, c=labels)
# Anchors
plt.scatter(U2[:, 0], U2[:, 1], marker="*", s=180)
plt.title("Constellation Map (PCA)")
plt.xlabel("PC1")
plt.ylabel("PC2")
plt.tight_layout()
plt.savefig(out_path, dpi=150)
plt.close()
def process_pipeline(docx_file, units_mode, K, iters, beta, bins, tau, seed):
if docx_file is None:
return gr.update(value="# Please upload a .docx file."), None, None, None, None
# Read file
paras = read_docx_any(docx_file)
units = paragraphs_to_units(paras, mode=units_mode)
if len(units) == 0:
return gr.update(value="# The document appears to be empty."), None, None, None, None
# Embed
Z, backend = embed_texts(units, prefer_sentence_transformer=True)
# CHR optimize
U, p, Hg_traj, Hs_traj = chr_optimize(Z, K=int(K), iters=int(iters), beta=float(beta), bins=int(bins), tau=float(tau), seed=int(seed))
labels = p.argmax(axis=1)
# Scores
Hg0, HgT = float(Hg_traj[0]), float(Hg_traj[-1])
Hs0, HsT = float(Hs_traj[0]), float(Hs_traj[-1])
mhep = compute_mhep(Hg_traj, Hs_traj, K=int(K), bins=int(bins))
# Structure
df, summaries = structure_outputs(units, Z, U, p)
# Exports
tmpdir = tempfile.mkdtemp()
csv_path = os.path.join(tmpdir, "constellations.csv")
json_path = os.path.join(tmpdir, "constellations.json")
plot_path = os.path.join(tmpdir, "constellations_pca.png")
df.to_csv(csv_path, index=False)
with open(json_path, "w", encoding="utf-8") as f:
json.dump(df.to_dict(orient="records"), f, ensure_ascii=False, indent=2)
# Plot
pca_plot(Z, U, labels, plot_path)
# Markdown report
md = []
md.append("# Constellation Harvest Regularization (CHR)")
md.append("**Backend embeddings:** " + str(backend))
md.append("")
md.append(f"**K (constellations):** {K} **Iterations:** {iters} **Beta:** {beta}")
md.append(f"**Bins:** {bins} **Tau:** {tau}")
md.append("")
md.append("## Harvest Metrics")
md.append(f"- Global range entropy (start → end): **{Hg0:.4f} → {HgT:.4f}**")
md.append(f"- Slab entropy (start → end): **{Hs0:.4f} → {HsT:.4f}**")
md.append(f"- **Maximum Harvestable Energy Potential (MHEP): {mhep:.1f}%**")
md.append("")
md.append("## Constellation Summaries")
for j in range(int(K)):
md.append(f"- **Constellation {j}**: {summaries.get(j, '(n/a)')}")
report_md = "\n".join(md)
return report_md, plot_path, df, csv_path, json_path
# ----------------- Gradio UI -----------------
INTRO_MD = """
# Constellation Harvest Regularization (CHR)
**Arrange your document into data constellations for maximum harvestable energy.**
Upload a **.docx** file. We embed each unit (paragraphs or sentences), then **optimize a set of constellation directions** to **reduce range entropy** and **align slabs** (the CHR principle).
You’ll get:
- A **harvest score** (MHEP) showing how much structure we extracted.
- A **constellation map** (2D PCA) with anchors (★) and your units as points.
- A **structured table** grouped by constellation and ordered along each ray.
- **CSV/JSON** exports for your pipeline.
"""
HOW_MD = """
## How it Works (Short Version)
- We convert your document into units (**paragraphs** by default; you can switch to **sentences**).
- We compute embeddings (MiniLM or a local fallback).
- We initialize **K** anchor directions and iteratively adjust them to **lower the global range entropy** while forming **low-entropy slabs** along each anchor.
- The **Maximum Harvestable Energy Potential (MHEP)** combines the normalized drop in global and slab entropy.
- We then **group units by constellation** and **order them radially**, making the dataset easier to exploit downstream (routing, chunking, sparsity).
**Tip:** Increase **K** for more granular constellations; increase **iterations** or **beta** for sharper structures.
"""
with gr.Blocks(title="Constellation Harvest Regularization (CHR)") as demo:
gr.Markdown(INTRO_MD)
with gr.Row():
with gr.Column(scale=1):
docx_file = gr.File(label=".docx document", file_types=[".docx"], file_count="single")
units_mode = gr.Radio(choices=["paragraphs", "sentences"], value="paragraphs", label="Unit granularity")
K = gr.Slider(2, 24, value=8, step=1, label="K (number of constellations)")
iters = gr.Slider(5, 100, value=30, step=1, label="Iterations")
beta = gr.Slider(2, 30, value=12, step=1, label="Beta (softmax sharpness)")
bins = gr.Slider(3, 16, value=8, step=1, label="Bins (slab histogram)")
tau = gr.Slider(1, 20, value=5, step=1, label="Tau (slab softness)")
seed = gr.Slider(0, 9999, value=42, step=1, label="Seed")
run_btn = gr.Button("Process", variant="primary")
with gr.Column(scale=1):
report_md = gr.Markdown("# Upload a file to begin.")
plot = gr.Image(label="Constellation Map (PCA)", type="filepath")
gr.Markdown(HOW_MD)
df_out = gr.Dataframe(label="Structured Output (head)", wrap=True, interactive=False)
with gr.Row():
csv_out = gr.File(label="Download CSV")
json_out = gr.File(label="Download JSON")
# Wiring
run_btn.click(process_pipeline,
inputs=[docx_file, units_mode, K, iters, beta, bins, tau, seed],
outputs=[report_md, plot, df_out, csv_out, json_out])
if __name__ == "__main__":
demo.launch() |