File size: 17,017 Bytes
f9c925e
 
973e1b3
 
 
 
 
 
 
 
 
 
 
6792367
973e1b3
6792367
973e1b3
f9c925e
 
 
6792367
f9c925e
973e1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cdd89
973e1b3
 
 
 
a8cdd89
973e1b3
a8cdd89
973e1b3
a8cdd89
973e1b3
 
 
 
a8cdd89
973e1b3
 
 
 
a8cdd89
973e1b3
 
 
a8cdd89
973e1b3
 
f9c925e
973e1b3
 
a8cdd89
973e1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8cdd89
973e1b3
 
 
a8cdd89
973e1b3
 
 
 
 
 
 
 
f9c925e
973e1b3
 
 
 
 
 
 
 
 
f9c925e
973e1b3
 
 
 
 
 
 
 
 
f9c925e
973e1b3
 
 
50f790a
 
973e1b3
 
 
 
f9c925e
a8cdd89
88e1260
 
973e1b3
6792367
 
973e1b3
 
6792367
973e1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6792367
973e1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6792367
973e1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e3d32
973e1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6792367
973e1b3
 
 
 
 
 
 
 
 
 
 
 
6792367
973e1b3
 
6792367
973e1b3
88e1260
6792367
88e1260
6792367
973e1b3
 
6792367
973e1b3
 
bb7d5c7
 
4cf0da7
 
 
 
 
 
 
bb7d5c7
6792367
973e1b3
 
 
 
 
 
 
 
 
 
f9c925e
973e1b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
<!DOCTYPE html>
<html lang="en-US">

<head>
  <meta charset="UTF-8">

  <!-- Begin Jekyll SEO tag v2.8.0 -->
  <title>Attention Tracker | Attention Tracker: Detecting Prompt Injection Attacks in LLMs </title>
  <meta property="og:title" content="Gradient Cuff" />
  <meta property="og:locale" content="en_US" />
  <meta name="description" content="Detecting Prompt Injection Attacks in LLMs using attention" />
  <meta property="og:description" content="Detecting Prompt Injection Attacks in LLMs using attention" />
  <script type="application/ld+json">
    {"@context":"https://schema.org","@type":"WebSite","description":"Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes","headline":"Gradient Cuff","name":"Gradient Cuff","url":"https://huggingface.co/spaces/gregH/Gradient Cuff"}</script>
  <!-- End Jekyll SEO tag -->

  <!-- <link rel="preconnect" href="https://fonts.gstatic.com">
    <link rel="preload" href="https://fonts.googleapis.com/css?family=Open+Sans:400,700&display=swap" as="style" type="text/css" crossorigin>
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <meta name="theme-color" content="#157878">
    <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"> -->

  <link rel="stylesheet" href="assets/css/bootstrap/bootstrap.min.css?v=90447f115a006bc45b738d9592069468b20e2551">
  <link rel="stylesheet" href="assets/css/style.css?v=90447f115a006bc45b738d9592069468b20e2551">
  <!-- start custom head snippets, customize with your own _includes/head-custom.html file -->
  <link rel="stylesheet" href="assets/css/custom_style.css?v=90447f115a006bc45b738d9592069468b20e2551">
  <link rel="stylesheet" href="style.css">
  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <link rel="stylesheet" href="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/themes/smoothness/jquery-ui.css">
  <script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery-ui.min.js"></script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.4/Chart.js"></script>
  <script src="assets/js/calibration.js?v=90447f115a006bc45b738d9592069468b20e2551"></script>
  <link rel="stylesheet" href="//code.jquery.com/ui/1.13.2/themes/base/jquery-ui.css">
  <link rel="stylesheet" href="/resources/demos/style.css">
  <script src="https://code.jquery.com/jquery-3.6.0.js"></script>
  <script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script>

  <!-- for mathjax support -->
  <script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
  <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
  <!-- end custom head snippets -->

  <!-- Font Awesome for PDF and GitHub icons -->
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css">

  <!-- AI2 HTML-CSS Icons (for arXiv) -->
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/academicons/1.9.1/css/academicons.min.css">

  <script>
    let normalIndex = 0;
    let attackIndex = 0;

    function navigateImages(type, direction) {
      let images;
      let currentIndex;

      if (type === 'normal') {
        images = document.querySelectorAll('.normal-gallery .image-gallery img');
        currentIndex = normalIndex;
      } else if (type === 'attack') {
        images = document.querySelectorAll('.attack-gallery .image-gallery img');
        currentIndex = attackIndex;
      }

      if (images && images.length > 0) {
        // Remove the active class from the current image
        images[currentIndex].classList.remove('active');

        // Update the current index based on direction and number of images
        currentIndex = (currentIndex + direction + images.length) % images.length;

        // Add the active class to the new image
        images[currentIndex].classList.add('active');

        // Save the updated index
        if (type === 'normal') {
          normalIndex = currentIndex;
        } else if (type === 'attack') {
          attackIndex = currentIndex;
        }
      } else {
        console.error("No images found for type:", type);
      }
    }

    // Initialize the galleries by adding the active class to the first image
    document.addEventListener("DOMContentLoaded", () => {
      const normalImages = document.querySelectorAll('.normal-gallery .image-gallery img');
      const attackImages = document.querySelectorAll('.attack-gallery .image-gallery img');

      if (normalImages.length > 0) {
        normalImages[0].classList.add('active');
      }

      if (attackImages.length > 0) {
        attackImages[0].classList.add('active');
      }
    });
  </script>

</head>

<body>
  <header class="page-header" role="banner">
    <h1 class="project-name" style="font-weight: 500;">Attention Tracker</h1>
    <h2 class="project-tagline">Attention Tracker: Detecting Prompt Injection Attacks in LLMs</h2>
    <p />
    <div style="text-align: center; font-size:larger; ">
      <div>
        <a href="https://khhung906.github.io/" style="color: white;" target="_blank" rel="noopener noreferrer">
          Kuo-Han Hung<sup>1,2</sup>,
        </a>
        <a href="https://ireneko.github.io/" style="color: white;" target="_blank" rel="noopener noreferrer">
          Ching-Yun Ko<sup>1</sup>,
        </a>
        <a href="" style="color: white;" target="_blank" rel="noopener noreferrer">
          Ambrish Rawat<sup>1</sup>,
        </a>
      </div>
      <div>
        <a href="" style="color: white;" target="_blank" rel="noopener noreferrer">
          I-Hsin Chung<sup>1</sup>,
        </a>
        <a href="https://winstonhsu.info/" style="color: white;" target="_blank" rel="noopener noreferrer">
          Winston H. Hsu<sup>2</sup>,
        </a>
        <a href="https://sites.google.com/site/pinyuchenpage/" style="color: white;" target="_blank"
          rel="noopener noreferrer">
          Pin-Yu Chen<sup>1</sup>
        </a>
      </div>

      <div style="color: #f1f0f0">
        <sup>1</sup>IBM Research <sup>2</sup>National Taiwan University
      </div>

      <div class="publication-links">
        <span class="link-block">
          <a href="https://arxiv.org/pdf/2411.00348.pdf" target="_blank"
            class="external-link button is-normal is-rounded is-dark">
            <span class="icon">
              <i class="fas fa-file-pdf"></i>
            </span>
            <span>Paper</span>
          </a>
        </span>

        <span class="link-block">
          <a href="https://arxiv.org/abs/2411.00348" target="_blank"
            class="external-link button is-normal is-rounded is-dark">
            <span class="icon">
              <i class="ai ai-arxiv"></i>
            </span>
            <span>arXiv</span>
          </a>
        </span>

        <span class="link-block">
          <a href="https://github.com/YOUR REPO HERE" target="_blank"
            class="external-link button is-normal is-rounded is-dark">
            <span class="icon">
              <i class="fab fa-github"></i>
            </span>
            <span>Code</span>
          </a>
        </span>

        <span class="link-block">
          <a href="https://huggingface.co/spaces/pinyuchen/attention-tracker" target="_blank"
          class="external-link button is-normal is-rounded is-dark">
            <span class="icon">
              <i class="fas fa-laptop"></i>
            </span>
            <span>Demo</span>
          </a>
        </span>
      </div>

  </header>


  <main id="content" class="main-content" role="main">
    <h2 id="abstract" class="section-title">Abstract</h2>

    <p>Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection
      attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated
      action. In this paper, we investigate
      the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs.
      We introduce the concept of the <strong>distraction effect</strong>, where specific attention heads, termed
      important heads, shift focus from the original instruction to the injected instruction. Building on this
      discovery, we propose <strong>Attention
        Tracker</strong>, a training-free detection method that tracks attention patterns on instruction to detect
      prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across
      diverse models, datasets,
      and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on
      small LLMs. We
      demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding
      LLM-integrated systems from prompt injection vulnerabilities.
    </p>

    <h2 id="what-is-jailbreak" class="section-title">What is Prompt Injection Attack?</h2>
    <p>A Prompt Injection Attack is a technique used to manipulate language models (like GPT-3 or similar AI systems) by
      injecting malicious or deceptive prompts into the input data, causing the model to behave in unexpected or
      undesired ways. This attack exploits the way language models interpret and respond to instructions, tricking them
      into providing information or performing actions that were not originally intended.</p>

    <div><img id="attack-intro" src="./figures/attack_intro.png" /></div>

    <h2 id="refusal-loss" class="section-title">Distraction Effect</h2>

    <p>
      In this section, we analyze the reasons behind the success of prompt injection attacks on LLMs. Specifically, we
      aim to understand
      <strong>what mechanism within LLMs causes them to "ignore" the original instruction and follow the injected
        instruction instead</strong>.
      To explore this, we examine the attention patterns of the last token in the input prompts, as it has the most
      direct influence on the LLMs' output.
    </p>

    <div class="container">
      <div><img id="attn-map-img" src="./figures/attn_map.png" /></div>
    </div>

    <p>
      In the figure (a), we visualize the attention maps of the last token in the input prompt for normal and attack
      data. We observe that the attention maps for normal data are much darker than those for attacked data,
      particularly in the middle and earlier layers of the LLM. This indicates that the last token's attention to the
      instruction is significantly higher for normal data than for attack data in specific attention heads. When
      inputting attacked data, the attention shifts away from the original instruction towards the attack data, which we
      refer to as the <strong>distraction effect</strong>.
      Additionally, in the figure (b), we find that the attention focus shifts from the original instruction to the
      injected instruction in the attack data. This suggests that the separator string helps the attacker shift
      attention to the injected instruction, causing the LLM to perform the injected task instead of the target task.
    </p>


    </div>

    <h2 id="proposed-approach-attention-tracker" class="section-title">Proposed Approach: Attention Tracker</h2>
    <p> With the discover of distraction effect, we propose <strong>Attention Tracker</strong>,
      a prompt injection detection method based on tracking the attention pattern on instruction. Our detection
      procedure is shown below:
    </p>

    <div class="container"><img id="attention-tracker-header" src="./figures/main.png" /></div>

    <p></p>
    <p>
      Attention Tracker can be summarized into two phases:
    </p>
    <p>
      <strong>(Phase 1) Finding Important Heads:</strong> In the first step, we identify specific attention head that
      that exhibit the distraction effect, which we termed the important heads. To find the important heads, we use a
      set of LLM-generated sentences with the ignore attack as the dataset.
    </p>
    <p>
      <strong>(Phase 2) Prompt Injection Detection with Important Heads:</strong> In the second step, we feed the
      testing quries into the target LLM and aggregate the attention directed towards the instruction in the important
      heads. With this aggregated score which we call the <strong>focus score</strong>, we can effectively detect prompt
      injection attacks.
    </p>

    <p>
      We provide more details about the running flow of Attention Tracker in the paper.
    </p>

    <h2 id="result-attention-tracker" class="section-title">Experiment Result</h2>
    <p>
      In this section, we evaluate Attention Tracker against various baselines with the AUROC score on two prompt
      injection detection benchmarks: Open-Prompt-Injection and deepset prompt injection dataset:
    </p>
    <div class="container"><img id="attention-tracker-header" src="./figures/result.png" /></div>
    <p />
    <p>
      As shown in the table, Attention Tracker consistently outperforms existing baselines, with an AUROC improvement of
      up to 3.1% on the Open-Prompt-Injection benchmark and 10.0% on the deepset prompt injection dataset. Among
      training-free methods, it achieves even greater gains, with an average AUROC improvement of 31.3% and 20.9% across
      the two datasets, respectively. Unlike LLM-based methods that rely on larger models for stability, Attention
      Tracker delivers robust and effective performance even with smaller LLMs, underscoring its suitability for
      real-world applications.
    </p>
    <h2 id="demo" class="section-title">Example</h2>

    <p>
      We evaluated the effectiveness of the Attention Tracker by visualizing the distribution of attention aggregation
      for key heads across different data types (normal data vs. attack data) in the Open-Prompt-Injection dataset.
      Additionally, we calculated the focus score for these data samples. A higher focus score indicates a lower
      likelihood of prompt injection attacks. The tested model is Qwen-2 1.8b.
    </p>
    <div class="group-title green">Normal Data</div>

    <div class="image-gallery-container normal-gallery">
      <span class="arrow left-arrow" onclick="navigateImages('normal', -1)">&lt;</span>
      <div class="image-gallery">
        <!-- <img id="normalImage1" src="./demo_results/normal_1.png" alt="Normal Image 1"> -->
        <img id="normalImage2" src="./demo_results/normal_2.png" alt="Normal Image 2">
        <img id="normalImage3" src="./demo_results/normal_3.png" alt="Normal Image 3">
        <img id="normalImage4" src="./demo_results/normal_4.png" alt="Normal Image 4">
        <img id="normalImage5" src="./demo_results/normal_5.png" alt="Normal Image 5">
      </div>
      <span class="arrow right-arrow" onclick="navigateImages('normal', 1)">&gt;</span>
    </div>

    <div class="group-title red">Attack Data</div>
    <div class="image-gallery-container attack-gallery">
      <span class="arrow left-arrow" onclick="navigateImages('attack', -1)">&lt;</span>
      <div class="image-gallery">
        <!-- <img id="attackImage1" src="./demo_results/attack_1.png" alt="Attack Image 1" class="active"> -->
        <img id="attackImage2" src="./demo_results/attack_2.png" alt="Attack Image 2">
        <img id="attackImage3" src="./demo_results/attack_3.png" alt="Attack Image 3">
        <img id="attackImage4" src="./demo_results/attack_4.png" alt="Attack Image 4">
        <img id="attackImage5" src="./demo_results/attack_5.png" alt="Attack Image 5">
      </div>
      <span class="arrow right-arrow" onclick="navigateImages('attack', 1)">&gt;</span>
    </div>

    <!-- <h2 id="inquiries" class="section-title"> Inquiries on Attention Tracker</h2>
      <p class="section-title"> Please contact <a href="Mailto:khhung906@gmail.com">Kuo-Han Hung</a>
          and <a href="Mailto:pin-yu.chen@ibm.com">Pin-Yu Chen</a> 
      </p> -->

    <h2 id="citations" class="section-title">Citations</h2>
    <p>If you find Attention Tracker helpful and useful for your research, please cite our main paper as follows:</p>

    <div class="language-plaintext highlighter-rouge">
      <div class="highlight">
        <pre class="highlight">
<code>@misc{hung2024attentiontrackerdetectingprompt,
    title={Attention Tracker: Detecting Prompt Injection Attacks in LLMs}, 
    author={Kuo-Han Hung and Ching-Yun Ko and Ambrish Rawat and I-Hsin Chung and Winston H. Hsu and Pin-Yu Chen},
    year={2024},
    eprint={2411.00348},
    archivePrefix={arXiv},
    primaryClass={cs.CR},
    url={https://arxiv.org/abs/2411.00348}, 
}</code></pre>
      </div>
    </div>

    <footer class="site-footer">

      <span class="site-footer-owner">This website is maintained by <a href="https://khhung906.github.io/">Kuo-Han
          Hung</a></a>.</span>

    </footer>
  </main>
</body>

</html>