File size: 6,817 Bytes
3566447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Updated Implementation includes RandomSearch, Best Individual .npy save

import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
import plotly.graph_objs as go
from keras_tuner import HyperModel, RandomSearch
from tqdm import tqdm

# Define the target X-shape pattern
target_pattern = np.array([
    [25.76815, -80.1868],
    [25.7743, -80.1937],
    [25.762, -80.18],
    [25.76815, -80.1868],
    [25.7743, -80.18],
    [25.762, -80.1937]
])

# Convert target pattern to TensorFlow tensor
target_pattern_tf = tf.constant(target_pattern, dtype=tf.float32)

# Define the GA parameters ranges
population_sizes = [30, 50, 70]
num_generations = 100000
mutation_rates = [0.05, 0.1, 0.15]
crossover_rates = [0.7, 0.8, 0.9]
elitism_counts = [3, 5, 7]

# Define the fitness function using TensorFlow
def fitness_function(positions):
    return tf.reduce_sum((positions - target_pattern_tf) ** 2, axis=[1, 2])

# Selection function (tournament selection) using TensorFlow
def selection(population, fitness_values):
    selected = []
    for _ in range(len(population)):
        idx1, idx2 = tf.random.uniform(shape=(2,), minval=0, maxval=len(population), dtype=tf.int32)
        if fitness_values[idx1] < fitness_values[idx2]:
            selected.append(population[idx1])
        else:
            selected.append(population[idx2])
    return tf.stack(selected)

# Crossover function (single-point crossover) using TensorFlow
def crossover(parent1, parent2, crossover_rate):
    if tf.random.uniform(()) < crossover_rate:
        crossover_point = tf.random.uniform((), minval=1, maxval=len(parent1), dtype=tf.int32)
        child1 = tf.concat([parent1[:crossover_point], parent2[crossover_point:]], axis=0)
        child2 = tf.concat([parent2[:crossover_point], parent1[crossover_point:]], axis=0)
        return child1, child2
    else:
        return parent1, parent2

# Mutation function using TensorFlow Probability
def mutate(individual, mutation_rate):
    mutation_mask = tfp.distributions.Bernoulli(probs=mutation_rate).sample(sample_shape=tf.shape(individual))
    mutation_noise = tfp.distributions.Normal(loc=0.0, scale=0.1).sample(sample_shape=tf.shape(individual))
    return individual + tf.cast(mutation_mask, tf.float32) * mutation_noise

# GA algorithm using TensorFlow
def genetic_algorithm(population_size, mutation_rate, crossover_rate, elitism_count, num_generations):
    population = tf.random.uniform((population_size, len(target_pattern), 2), dtype=tf.float32)
    
    best_fitness_overall = float('inf')
    best_individual_overall = None
    
    for generation in tqdm(range(num_generations), desc="Generations"):
        fitness_values = fitness_function(population)
        
        # Track the best fitness and individual overall
        best_fitness_current_gen = tf.reduce_min(fitness_values).numpy()
        best_individual_current_gen = population[tf.argmin(fitness_values)].numpy()
        
        if best_fitness_current_gen < best_fitness_overall:
            best_fitness_overall = best_fitness_current_gen
            best_individual_overall = best_individual_current_gen
        
        # Elitism: Preserve the best individuals
        elite_indices = tf.argsort(fitness_values)[:elitism_count]
        elites = tf.gather(population, elite_indices)
        
        # Select parents
        parents = selection(population, fitness_values)
        
        # Create offspring through crossover and mutation
        offspring = []
        for i in range(0, len(parents) - 1, 2):
            child1, child2 = crossover(parents[i], parents[i + 1], crossover_rate)
            offspring.append(mutate(child1, mutation_rate))
            offspring.append(mutate(child2, mutation_rate))
        
        # Ensure offspring size matches population size - elitism count
        num_offspring_needed = population_size - elitism_count
        offspring = offspring[:num_offspring_needed]
        
        # Replace the population with the offspring and elites
        population = tf.concat([tf.stack(offspring), elites], axis=0)
    
    return best_fitness_overall, best_individual_overall

# HyperModel for Keras Tuner
class GAHyperModel(HyperModel):
    def __init__(self, num_generations):
        self.num_generations = num_generations
    
    def build(self, hp):
        population_size = hp.Choice('population_size', values=population_sizes)
        mutation_rate = hp.Choice('mutation_rate', values=mutation_rates)
        crossover_rate = hp.Choice('crossover_rate', values=crossover_rates)
        elitism_count = hp.Choice('elitism_count', values=elitism_counts)
        
        final_fitness, _ = genetic_algorithm(
            population_size, mutation_rate, crossover_rate, elitism_count, self.num_generations
        )
        
        return final_fitness

# Hyperparameter tuning using Keras Tuner
tuner = RandomSearch(
    GAHyperModel(num_generations),
    objective='val_loss',
    max_trials=50,
    executions_per_trial=1,
    directory='ga_tuning',
    project_name='genetic_algorithm'
)

tuner.search(x=None, y=None, epochs=1, verbose=1)

# Get the best hyperparameters
best_hyperparams = tuner.get_best_hyperparameters(num_trials=1)[0]
best_population_size = best_hyperparams.get('population_size')
best_mutation_rate = best_hyperparams.get('mutation_rate')
best_crossover_rate = best_hyperparams.get('crossover_rate')
best_elitism_count = best_hyperparams.get('elitism_count')

# Run the GA with the best hyperparameters
best_fitness, best_individual = genetic_algorithm(
    best_population_size, best_mutation_rate, best_crossover_rate, best_elitism_count, num_generations
)

# Output the best hyperparameters and the corresponding best individual
print(f"Best hyperparameters: population_size={best_population_size}, mutation_rate={best_mutation_rate}, crossover_rate={best_crossover_rate}, elitism_count={best_elitism_count}")
print(f"Best fitness: {best_fitness}")

# Save the best individual
np.save('best_individual.npy', best_individual)

# Validate the flight path trajectory
def plot_trajectory(positions):
    fig = go.Figure()
    
    # Plot target pattern
    fig.add_trace(go.Scatter(
        x=target_pattern[:, 0],
        y=target_pattern[:, 1],
        mode='markers+lines',
        name='Target Pattern',
        marker=dict(size=10, color='red')
    ))
    
    # Plot optimized pattern
    fig.add_trace(go.Scatter(
        x=positions[:, 0],
        y=positions[:, 1],
        mode='markers+lines',
        name='Optimized Pattern',
        marker=dict(size=10, color='blue')
    ))
    
    fig.update_layout(
        title='UAV Swarm Intelligence: X-Shape Pattern',
        xaxis_title='X',
        yaxis_title='Y'
    )
    
    fig.show()

# Plot the final optimized pattern
plot_trajectory(best_individual)