Spaces:
Build error
Build error
import pandas as pd | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.impute import SimpleImputer | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense | |
from tensorflow.keras.models import load_model | |
model = load_model("auto_mpg_model.h5") | |
imputer = SimpleImputer(strategy='median') | |
scaler = StandardScaler() | |
def predict_mpg(data): | |
input_data = np.array(data).reshape(1, -1) | |
input_scaled = scaler.fit_transform(input_data) | |
prediction = model.predict(input_scaled) | |
return prediction[0][0] | |
input_data = [4, 121, 110, 2800, 15.4, 81, 3] | |
predicted_mpg = predict_mpg(input_data) | |
print("Predicted MPG:", predicted_mpg) | |
auto_mpg_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data" | |
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] | |
data = pd.read_csv(auto_mpg_data_url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) | |
data = data.dropna() | |
X = data.drop('MPG', axis=1) | |
y = data['MPG'] | |
imputer = SimpleImputer(strategy='median') | |
X_imputed = imputer.fit_transform(X) | |
scaler = StandardScaler() | |
X_scaled = scaler.fit_transform(X_imputed) | |
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) | |
model = Sequential([ | |
Dense(64, activation='relu', input_shape=(X_train.shape[1],)), | |
Dense(32, activation='relu'), | |
Dense(1) | |
]) | |
model.compile(optimizer='adam', loss='mean_squared_error') | |
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=2) | |
model.save("auto_mpg_model.h5") | |
model = load_model("auto_mpg_model.h5") | |
imputer = SimpleImputer(strategy='median') | |
scaler = StandardScaler() | |
def predict_mpg(data): | |
input_data = np.array(data).reshape(1, -1) | |
input_scaled = scaler.fit_transform(input_data) | |
prediction = model.predict(input_scaled) | |
return prediction[0][0] | |
input_data = input() | |
predicted_mpg = predict_mpg(input_data) | |
print("Predicted MPG:", predicted_mpg) |