import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.models import load_model model = load_model("auto_mpg_model.h5") imputer = SimpleImputer(strategy='median') scaler = StandardScaler() def predict_mpg(data): input_data = np.array(data).reshape(1, -1) input_scaled = scaler.fit_transform(input_data) prediction = model.predict(input_scaled) return prediction[0][0] input_data = [4, 121, 110, 2800, 15.4, 81, 3] predicted_mpg = predict_mpg(input_data) print("Predicted MPG:", predicted_mpg) auto_mpg_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data" column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin'] data = pd.read_csv(auto_mpg_data_url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True) data = data.dropna() X = data.drop('MPG', axis=1) y = data['MPG'] imputer = SimpleImputer(strategy='median') X_imputed = imputer.fit_transform(X) scaler = StandardScaler() X_scaled = scaler.fit_transform(X_imputed) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42) model = Sequential([ Dense(64, activation='relu', input_shape=(X_train.shape[1],)), Dense(32, activation='relu'), Dense(1) ]) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=2) model.save("auto_mpg_model.h5") model = load_model("auto_mpg_model.h5") imputer = SimpleImputer(strategy='median') scaler = StandardScaler() def predict_mpg(data): input_data = np.array(data).reshape(1, -1) input_scaled = scaler.fit_transform(input_data) prediction = model.predict(input_scaled) return prediction[0][0] input_data = input() predicted_mpg = predict_mpg(input_data) print("Predicted MPG:", predicted_mpg)