Spaces:
Build error
Build error
Commit
·
73f7ad5
1
Parent(s):
bdd84ab
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
from sklearn.impute import SimpleImputer
|
6 |
+
from tensorflow.keras.models import Sequential
|
7 |
+
from tensorflow.keras.layers import Dense
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
|
10 |
+
model = load_model("auto_mpg_model.h5")
|
11 |
+
|
12 |
+
imputer = SimpleImputer(strategy='median')
|
13 |
+
scaler = StandardScaler()
|
14 |
+
|
15 |
+
def predict_mpg(data):
|
16 |
+
input_data = np.array(data).reshape(1, -1)
|
17 |
+
|
18 |
+
input_scaled = scaler.fit_transform(input_data)
|
19 |
+
|
20 |
+
prediction = model.predict(input_scaled)
|
21 |
+
|
22 |
+
return prediction[0][0]
|
23 |
+
|
24 |
+
input_data = [4, 121, 110, 2800, 15.4, 81, 3]
|
25 |
+
predicted_mpg = predict_mpg(input_data)
|
26 |
+
print("Predicted MPG:", predicted_mpg)
|
27 |
+
|
28 |
+
auto_mpg_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data"
|
29 |
+
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']
|
30 |
+
data = pd.read_csv(auto_mpg_data_url, names=column_names, na_values='?', comment='\t', sep=' ', skipinitialspace=True)
|
31 |
+
|
32 |
+
data = data.dropna()
|
33 |
+
|
34 |
+
X = data.drop('MPG', axis=1)
|
35 |
+
y = data['MPG']
|
36 |
+
|
37 |
+
imputer = SimpleImputer(strategy='median')
|
38 |
+
X_imputed = imputer.fit_transform(X)
|
39 |
+
|
40 |
+
scaler = StandardScaler()
|
41 |
+
X_scaled = scaler.fit_transform(X_imputed)
|
42 |
+
|
43 |
+
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
|
44 |
+
|
45 |
+
model = Sequential([
|
46 |
+
Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
|
47 |
+
Dense(32, activation='relu'),
|
48 |
+
Dense(1)
|
49 |
+
])
|
50 |
+
|
51 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
52 |
+
|
53 |
+
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, verbose=2)
|
54 |
+
|
55 |
+
model.save("auto_mpg_model.h5")
|
56 |
+
|
57 |
+
model = load_model("auto_mpg_model.h5")
|
58 |
+
|
59 |
+
imputer = SimpleImputer(strategy='median')
|
60 |
+
scaler = StandardScaler()
|
61 |
+
|
62 |
+
def predict_mpg(data):
|
63 |
+
input_data = np.array(data).reshape(1, -1)
|
64 |
+
|
65 |
+
input_scaled = scaler.fit_transform(input_data)
|
66 |
+
|
67 |
+
prediction = model.predict(input_scaled)
|
68 |
+
|
69 |
+
return prediction[0][0]
|
70 |
+
|
71 |
+
input_data = input()
|
72 |
+
predicted_mpg = predict_mpg(input_data)
|
73 |
+
print("Predicted MPG:", predicted_mpg)
|